These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8531821)

  • 1. Heterologous expression of higher plant transport proteins and repression of endogenous ion currents in Xenopus oocytes.
    Schroeder JI
    Methods Cell Biol; 1995; 50():519-33. PubMed ID: 8531821
    [No Abstract]   [Full Text] [Related]  

  • 2. Xenopus oocytes as an expression system for plant transporters.
    Miller AJ; Zhou JJ
    Biochim Biophys Acta; 2000 May; 1465(1-2):343-58. PubMed ID: 10748264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of plant proteins in heterologous systems: Xenopus laevis oocytes.
    Galili G; Altschuler Y; Ceriotti A
    Methods Cell Biol; 1995; 50():497-517. PubMed ID: 8531819
    [No Abstract]   [Full Text] [Related]  

  • 4. Xenopus oocytes as a heterologous expression system for plant proteins.
    Theodoulou FL; Miller AJ
    Mol Biotechnol; 1995 Apr; 3(2):101-15. PubMed ID: 7620971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crithidia luciliae: functional expression of nucleoside and nucleobase transporters in Xenopus laevis oocytes.
    Hall ST; Penny JI; Gero AM; Krishna S
    Exp Parasitol; 1998 Oct; 90(2):181-8. PubMed ID: 9769248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expressing and characterizing mechanosensitive channels in Xenopus oocytes.
    Maksaev G; Haswell ES
    Methods Mol Biol; 2015; 1309():151-69. PubMed ID: 25981775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic model with ordered cytoplasmic dissociation for SUC1, an Arabidopsis H+/sucrose cotransporter expressed in Xenopus oocytes.
    Zhou J; Theodoulou F; Sauer N; Sanders D; Miller AJ
    J Membr Biol; 1997 Sep; 159(2):113-25. PubMed ID: 9307438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of endogenous channels by high levels of heterologous membrane proteins in Xenopus oocytes.
    Tzounopoulos T; Maylie J; Adelman JP
    Biophys J; 1995 Sep; 69(3):904-8. PubMed ID: 8519990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unidirectional fluxes through ion channels expressed in Xenopus oocytes.
    Stampe P; Begenisich T
    Methods Enzymol; 1998; 293():556-64. PubMed ID: 9711628
    [No Abstract]   [Full Text] [Related]  

  • 10. Expression of membrane transporters in cane toad Bufo marinus oocytes.
    Markovich D; Regeer RR
    J Exp Biol; 1999 Aug; 202(Pt 16):2217-23. PubMed ID: 10409492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel Xenopus oocyte expression system based on cytoplasmic coinjection of T7-driven plasmids and purified T7-RNA polymerase.
    Geib S; Sandoz G; Carlier E; Cornet V; Cheynet-Sauvion V; De Waard M
    Recept Channels; 2001; 7(5):331-43. PubMed ID: 11697077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viral and cellular small integral membrane proteins can modify ion channels endogenous to Xenopus oocytes.
    Shimbo K; Brassard DL; Lamb RA; Pinto LH
    Biophys J; 1995 Nov; 69(5):1819-29. PubMed ID: 8580325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-level expression and detection of ion channels in Xenopus oocytes.
    Shih TM; Smith RD; Toro L; Goldin AL
    Methods Enzymol; 1998; 293():529-56. PubMed ID: 9711627
    [No Abstract]   [Full Text] [Related]  

  • 14. Xenopus oocytes as a heterologous expression system.
    Theodoulou FL; Miller AJ
    Methods Mol Biol; 1995; 49():317-40. PubMed ID: 8563815
    [No Abstract]   [Full Text] [Related]  

  • 15. A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes.
    Zampighi GA; Kreman M; Boorer KJ; Loo DD; Bezanilla F; Chandy G; Hall JE; Wright EM
    J Membr Biol; 1995 Nov; 148(1):65-78. PubMed ID: 8558603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression cloning using Xenopus laevis oocytes.
    Romero MF; Kanai Y; Gunshin H; Hediger MA
    Methods Enzymol; 1998; 296():17-52. PubMed ID: 9779438
    [No Abstract]   [Full Text] [Related]  

  • 17. KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents.
    Decher N; Bundis F; Vajna R; Steinmeyer K
    Pflugers Arch; 2003 Sep; 446(6):633-40. PubMed ID: 12856183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KCNA10: a novel ion channel functionally related to both voltage-gated potassium and CNG cation channels.
    Lang R; Lee G; Liu W; Tian S; Rafi H; Orias M; Segal AS; Desir GV
    Am J Physiol Renal Physiol; 2000 Jun; 278(6):F1013-21. PubMed ID: 10836990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence techniques for studying cloned channels and transporters expressed in Xenopus oocytes.
    Cha A; Zerangue N; Kavanaugh M; Bezanilla F
    Methods Enzymol; 1998; 296():566-78. PubMed ID: 9779474
    [No Abstract]   [Full Text] [Related]  

  • 20. Production of functional GLUT1 by co-expression of N- and C-terminal half molecules in Xenopus oocytes.
    Preston RA; Sami AJ; Charalambous BM; Baldwin SA
    Biochem Soc Trans; 1994 Aug; 22(3):276S. PubMed ID: 7821535
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.