These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 8531873)

  • 1. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy.
    Nigg DW; Wemple CA; Risler R; Hartwell JK; Harker YD; Laramore GE
    Med Phys; 2000 Feb; 27(2):359-67. PubMed ID: 10718140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The multileaf collimator for fast neutron therapy at Louvain-la-Neuve.
    Denis JM; Meulders JP; Lannoye E; Longrée Y; Ryckewaert G; Richard F; Vynckier S; Wambersie A
    Bull Cancer Radiother; 1996; 83 Suppl():160s-9s. PubMed ID: 8949771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A superconducting cyclotron for neutron radiation therapy.
    Maughan RL; Powers WE; Blosser HG
    Med Phys; 1994 Jun; 21(6):779-85. PubMed ID: 7935214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design considerations for a computer controlled multileaf collimator for the Harper Hospital fast neutron therapy facility.
    Maughan RL; Yudelev M; Aref A; Chuba PJ; Forman J; Blosser EJ; Horste T
    Med Phys; 2002 Apr; 29(4):499-508. PubMed ID: 11991121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Clatterbridge high-energy neutron therapy facility: specification and performance.
    Bonnett DE; Blake SW; Shaw JE; Bewley DK
    Br J Radiol; 1988 Jan; 61(721):38-46. PubMed ID: 3126848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy.
    Mijnheer BJ
    Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses.
    Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB
    Med Phys; 1977; 4(6):486-93. PubMed ID: 412047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations of x-ray and neutron transmission through multirod arrays.
    Maughan RL; Kruger DG; Blosser GF; Blosser HG
    Med Phys; 1995 Apr; 22(4):427-33. PubMed ID: 7609723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.
    Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A variety of fast neutron beams for radiobiological research.
    Wolber G; Höver KH; Maier-Borst W; Lorenz WJ; Krauss O
    Bull Cancer Radiother; 1996; 83 Suppl():170s-2s. PubMed ID: 8949772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of a multirod collimator in fast neutron therapy.
    Yudelev M; Maughan RL; Sharma R; Forman JD
    Bull Cancer Radiother; 1996; 83 Suppl():157s-9s. PubMed ID: 8949770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of flattening filters for the fast-neutron beam at TAMVEC by use of decrement lines.
    Otte VA; Smathers JB; Wright RE
    Med Phys; 1976; 3(4):250-2. PubMed ID: 822271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of semiconductors for dosimetry of fast-neutron therapy beam.
    Yudelev M; Alyousef K; Brandon J; Perevertailo V; Lerch ML; Rosenfeld AB
    Radiat Prot Dosimetry; 2004; 110(1-4):573-8. PubMed ID: 15353711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thick beryllium target as an epithermal neutron source for neutron capture therapy.
    Wang CK; Moore BR
    Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics.
    Goodhead DT; Berry RJ; Bance DA; Gray P; Stedeford JB
    AJR Am J Roentgenol; 1977 Oct; 129(4):709-16. PubMed ID: 409249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multirod collimator for neutron therapy.
    Maughan RL; Blosser GF; Blosser EB; Yudelev M; Forman JD; Blosser HG; Powers WE
    Int J Radiat Oncol Biol Phys; 1996 Jan; 34(2):411-20. PubMed ID: 8567343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.