BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 8532526)

  • 1. Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells.
    Caldecott KW; Tucker JD; Stanker LH; Thompson LH
    Nucleic Acids Res; 1995 Dec; 23(23):4836-43. PubMed ID: 8532526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III.
    Caldecott KW; McKeown CK; Tucker JD; Ljungquist S; Thompson LH
    Mol Cell Biol; 1994 Jan; 14(1):68-76. PubMed ID: 8264637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered DNA ligase III activity in the CHO EM9 mutant.
    Ljungquist S; Kenne K; Olsson L; Sandström M
    Mutat Res; 1994 Mar; 314(2):177-86. PubMed ID: 7510367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial DNA ligase III function is independent of Xrcc1.
    Lakshmipathy U; Campbell C
    Nucleic Acids Res; 2000 Oct; 28(20):3880-6. PubMed ID: 11024166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair.
    Cappelli E; Taylor R; Cevasco M; Abbondandolo A; Caldecott K; Frosina G
    J Biol Chem; 1997 Sep; 272(38):23970-5. PubMed ID: 9295348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CHO XRCC1 mutant, EM9, deficient in DNA ligase III activity, exhibits hypersensitivity to camptothecin independent of DNA replication.
    Barrows LR; Holden JA; Anderson M; D'Arpa P
    Mutat Res; 1998 Aug; 408(2):103-10. PubMed ID: 9739812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of a BRCT domain in the interaction of DNA ligase III-alpha with the DNA repair protein XRCC1.
    Taylor RM; Wickstead B; Cronin S; Caldecott KW
    Curr Biol; 1998 Jul; 8(15):877-80. PubMed ID: 9705932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XRCC1-DNA polymerase beta interaction is required for efficient base excision repair.
    Dianova II; Sleeth KM; Allinson SL; Parsons JL; Breslin C; Caldecott KW; Dianov GL
    Nucleic Acids Res; 2004; 32(8):2550-5. PubMed ID: 15141024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro.
    Caldecott KW; Aoufouchi S; Johnson P; Shall S
    Nucleic Acids Res; 1996 Nov; 24(22):4387-94. PubMed ID: 8948628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair.
    Leppard JB; Dong Z; Mackey ZB; Tomkinson AE
    Mol Cell Biol; 2003 Aug; 23(16):5919-27. PubMed ID: 12897160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage.
    Masson M; Niedergang C; Schreiber V; Muller S; Menissier-de Murcia J; de Murcia G
    Mol Cell Biol; 1998 Jun; 18(6):3563-71. PubMed ID: 9584196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair.
    Taylor RM; Moore DJ; Whitehouse J; Johnson P; Caldecott KW
    Mol Cell Biol; 2000 Jan; 20(2):735-40. PubMed ID: 10611252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BRCT domain interactions in the heterodimeric DNA repair protein XRCC1-DNA ligase III.
    Dulic A; Bates PA; Zhang X; Martin SR; Freemont PS; Lindahl T; Barnes DE
    Biochemistry; 2001 May; 40(20):5906-13. PubMed ID: 11352725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining.
    Audebert M; Salles B; Calsou P
    J Biol Chem; 2004 Dec; 279(53):55117-26. PubMed ID: 15498778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair.
    Whitehouse CJ; Taylor RM; Thistlethwaite A; Zhang H; Karimi-Busheri F; Lasko DD; Weinfeld M; Caldecott KW
    Cell; 2001 Jan; 104(1):107-17. PubMed ID: 11163244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rescue of Xrcc1 knockout mouse embryo lethality by transgene-complementation.
    Tebbs RS; Thompson LH; Cleaver JE
    DNA Repair (Amst); 2003 Dec; 2(12):1405-17. PubMed ID: 14642568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair.
    Simsek D; Furda A; Gao Y; Artus J; Brunet E; Hadjantonakis AK; Van Houten B; Shuman S; McKinnon PJ; Jasin M
    Nature; 2011 Mar; 471(7337):245-8. PubMed ID: 21390132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disconnecting XRCC1 and DNA ligase III.
    Katyal S; McKinnon PJ
    Cell Cycle; 2011 Jul; 10(14):2269-75. PubMed ID: 21636980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. XRCC1 phosphorylation by CK2 is required for its stability and efficient DNA repair.
    Parsons JL; Dianova II; Finch D; Tait PS; Ström CE; Helleday T; Dianov GL
    DNA Repair (Amst); 2010 Jul; 9(7):835-41. PubMed ID: 20471329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the DNA ligase III zinc finger in polynucleotide binding and ligation.
    Taylor RM; Whitehouse J; Cappelli E; Frosina G; Caldecott KW
    Nucleic Acids Res; 1998 Nov; 26(21):4804-10. PubMed ID: 9776738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.