These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 8532588)
1. Pituitary adenylate cyclase-activating peptide (PACAP), a VIP-like peptide, has prolonged airway smooth muscle relaxant activity. Foda HD; Sharaf HH; Absood A; Said SI Peptides; 1995; 16(6):1057-61. PubMed ID: 8532588 [TBL] [Abstract][Full Text] [Related]
2. Relaxant effects of pituitary adenylate cyclase activating polypeptide (PACAP) on epithelium-intact and -denuded guinea-pig trachea: a comparison with vasoactive intestinal peptide (VIP). Conroy DM; St-Pierre S; Sirois P Neuropeptides; 1995 Sep; 29(3):121-7. PubMed ID: 8538872 [TBL] [Abstract][Full Text] [Related]
3. Effects of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide on cyclic AMP accumulation in sheep pituitary cells in vitro. Sawangjaroen K; Sernia C; Curlewis JD J Endocrinol; 1996 Mar; 148(3):545-52. PubMed ID: 8778233 [TBL] [Abstract][Full Text] [Related]
4. The effects of PACAP and VIP on guinea pig tracheal smooth muscle in vitro. Bhogal R; Sheldrick RL; Coleman RA; Smith DM; Bloom SR Peptides; 1994; 15(7):1237-41. PubMed ID: 7854975 [TBL] [Abstract][Full Text] [Related]
5. Role of Na(+)-K(+)-ATPase in airway smooth muscle relaxation by vasoactive intestinal peptide and pituitary adenylate cyclase activating peptide. Kanemura T; Tamaoki J; Chiyotani A; Takeyama K; Sakai N; Tagaya E; Konno K Res Commun Chem Pathol Pharmacol; 1993 Jan; 79(1):11-22. PubMed ID: 8381977 [TBL] [Abstract][Full Text] [Related]
6. Vascular effects of pituitary adenylate cyclase activating peptide: a comparison with vasoactive intestinal peptide. Absood A; Chen D; Wang ZY; Håkanson R Regul Pept; 1992 Aug; 40(3):323-9. PubMed ID: 1332142 [TBL] [Abstract][Full Text] [Related]
8. Pituitary adenylate cyclase activating peptide mediates inhibitory nonadrenergic noncholinergic relaxation. Yoshida M; Aizawa H; Takahashi N; Shigyo M; Hara N Eur J Pharmacol; 2000 Apr; 395(1):77-83. PubMed ID: 10781677 [TBL] [Abstract][Full Text] [Related]
9. Receptors for VIP and PACAP in guinea pig cerebral cortex: effects on cyclic AMP synthesis and characterization by 125I-VIP binding. Zawilska JB; Dejda A; Niewiadomski P; Gozes I; Nowak JZ J Mol Neurosci; 2005; 25(3):215-24. PubMed ID: 15800375 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the rat proopiomelanocortin gene expression in AtT-20 cells. II: Effects of the pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide. Aoki Y; Iwasaki Y; Katahira M; Oiso Y; Saito H Endocrinology; 1997 May; 138(5):1930-4. PubMed ID: 9112389 [TBL] [Abstract][Full Text] [Related]
11. Bronchodilator-mediated relaxation of normal and ovalbumin-sensitized guinea-pig airways: lack of correlation with lung adenylate cyclase activation. Burka JF; Saad MH Br J Pharmacol; 1984 Nov; 83(3):645-55. PubMed ID: 6439271 [TBL] [Abstract][Full Text] [Related]
12. Distinct receptors mediate pituitary adenylate cyclase-activating peptide- and vasoactive intestinal peptide-induced relaxation of rat ileal longitudinal muscle. Ekblad E; Sundler F Eur J Pharmacol; 1997 Sep; 334(1):61-6. PubMed ID: 9346329 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory effect of PACAP(6-38) on relaxations induced by PACAP, VIP and non-adrenergic, non-cholinergic nerve stimulation in the guinea-pig taenia caeci. Lénárd L; Lázár Z; Benkó R; Szigeti R; Báthori Z; Tóth GK; Penke B; Barthó L Naunyn Schmiedebergs Arch Pharmacol; 2000 May; 361(5):492-7. PubMed ID: 10832602 [TBL] [Abstract][Full Text] [Related]
14. Long lasting smooth muscle relaxation by a novel PACAP analogue in guinea-pig and primate airways in vitro. Yoshihara S; Lindén A; Kashimoto K; Nagano Y; Ichimura T; Nadel JA Br J Pharmacol; 1997 Aug; 121(8):1730-4. PubMed ID: 9283710 [TBL] [Abstract][Full Text] [Related]
15. Characterization of PACAP receptors and signaling pathways in rabbit gastric muscle cells. Murthy KS; Jin JG; Grider JR; Makhlouf GM Am J Physiol; 1997 Jun; 272(6 Pt 1):G1391-9. PubMed ID: 9227474 [TBL] [Abstract][Full Text] [Related]
16. Pituitary adenylate cyclase-activating polypeptide, helospectin, and vasoactive intestinal polypeptide in human corpus cavernosum. Hedlund P; Alm P; Ekström P; Fahrenkrug J; Hannibal J; Hedlund H; Larsson B; Andersson KE Br J Pharmacol; 1995 Oct; 116(4):2258-66. PubMed ID: 8564257 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological, molecular and functional characterization of vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide receptors in the rat pineal gland. Simonneaux V; Kienlen-Campard P; Loeffler JP; Basille M; Gonzalez BJ; Vaudry H; Robberecht P; Pévet P Neuroscience; 1998 Aug; 85(3):887-96. PubMed ID: 9639281 [TBL] [Abstract][Full Text] [Related]
18. A novel hypothalamic peptide, pituitary adenylate cyclase-activating peptide, regulates the function of rat granulosa cells in vitro. Heindel JJ; Sneeden J; Powell CJ; Davis B; Culler MD Biol Reprod; 1996 Mar; 54(3):523-30. PubMed ID: 8835372 [TBL] [Abstract][Full Text] [Related]
19. Tissue-specific and developmental expression of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in rat brain. D'Agata V; Cavallaro S; Stivala F; Canonico PL Eur J Neurosci; 1996 Feb; 8(2):310-8. PubMed ID: 8714702 [TBL] [Abstract][Full Text] [Related]
20. Regulation of growth hormone release in common carp pituitary cells by pituitary adenylate cyclase-activating polypeptide: signal transduction involves cAMP- and calcium-dependent mechanisms. Xiao D; Chu MM; Lee EK; Lin HR; Wong AO Neuroendocrinology; 2002 Nov; 76(5):325-38. PubMed ID: 12457043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]