These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8533066)

  • 21. Functional regeneration and restoration of locomotor activity following spinal cord transection in the lamprey.
    McClellan AD
    Prog Brain Res; 1994; 103():203-17. PubMed ID: 7886205
    [No Abstract]   [Full Text] [Related]  

  • 22. Phasic modulation of transmission from vestibular inputs to reticulospinal neurons during fictive locomotion in lampreys.
    Bussières N; Dubuc R
    Brain Res; 1992 Jun; 582(1):147-53. PubMed ID: 1323371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: resetting, entrainment, and computer modeling.
    McClellan AD; Jang W
    J Neurophysiol; 1993 Dec; 70(6):2442-54. PubMed ID: 8120592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The intrinsic function of a motor system--from ion channels to networks and behavior.
    Grillner S; Cangiano L; Hu G; Thompson R; Hill R; Wallén P
    Brain Res; 2000 Dec; 886(1-2):224-236. PubMed ID: 11119698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural bases of goal-directed locomotion in vertebrates--an overview.
    Grillner S; Wallén P; Saitoh K; Kozlov A; Robertson B
    Brain Res Rev; 2008 Jan; 57(1):2-12. PubMed ID: 17916382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modifications of locomotor pattern underlying escape behavior in the lamprey.
    Islam SS; Zelenin PV
    J Neurophysiol; 2008 Jan; 99(1):297-307. PubMed ID: 18003880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of spinal cord inputs in modulating the activity of reticulospinal neurons during fictive locomotion in the lamprey.
    Dubuc R; Grillner S
    Brain Res; 1989 Mar; 483(1):196-200. PubMed ID: 2650805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A neural system for boosting locomotion.
    Tresch MC
    Nat Neurosci; 2010 Jun; 13(6):659-60. PubMed ID: 20498686
    [No Abstract]   [Full Text] [Related]  

  • 30. Rhythmogenesis in axial locomotor networks: an interspecies comparison.
    Ryczko D; Dubuc R; Cabelguen JM
    Prog Brain Res; 2010; 187():189-211. PubMed ID: 21111209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of 'fictive swimming' by electrical microstimulation of brainstem locomotor regions in an in vitro preparation of the lamprey central nervous system.
    McClellan AD; Grillner S
    Brain Res; 1984 May; 300(2):357-61. PubMed ID: 6733478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ion channels of importance for the locomotor pattern generation in the lamprey brainstem-spinal cord.
    Grillner S; Wallén P; Hill R; Cangiano L; El Manira A
    J Physiol; 2001 May; 533(Pt 1):23-30. PubMed ID: 11351009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From swimming to walking with a salamander robot driven by a spinal cord model.
    Ijspeert AJ; Crespi A; Ryczko D; Cabelguen JM
    Science; 2007 Mar; 315(5817):1416-20. PubMed ID: 17347441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The neural network underlying locomotion in lamprey--synaptic and cellular mechanisms.
    Grillner S; Matsushima T
    Neuron; 1991 Jul; 7(1):1-15. PubMed ID: 1676892
    [No Abstract]   [Full Text] [Related]  

  • 35. The neural control of respiration in lampreys.
    Missaghi K; Le Gal JP; Gray PA; Dubuc R
    Respir Physiol Neurobiol; 2016 Dec; 234():14-25. PubMed ID: 27562521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of sensory-evoked NMDA plateau potentials in the initiation of locomotion.
    Di Prisco GV; Pearlstein E; Robitaille R; Dubuc R
    Science; 1997 Nov; 278(5340):1122-5. PubMed ID: 9353193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey.
    Wallén P; Ekeberg O; Lansner A; Brodin L; Tråvén H; Grillner S
    J Neurophysiol; 1992 Dec; 68(6):1939-50. PubMed ID: 1283406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.II. Hemisegmental oscillations produced by mutually coupled excitatory neurons.
    Kotaleski JH; Lansner A; Grillner S
    Biol Cybern; 1999 Oct; 81(4):299-315. PubMed ID: 10541934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phasic variations of extracellular potassium during fictive swimming in the lamprey spinal cord in vitro.
    Wallén P; Grafe P; Grillner S
    Acta Physiol Scand; 1984 Mar; 120(3):457-63. PubMed ID: 6741576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion.
    Cohen AH; Ermentrout GB; Kiemel T; Kopell N; Sigvardt KA; Williams TL
    Trends Neurosci; 1992 Nov; 15(11):434-8. PubMed ID: 1281350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.