BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8533457)

  • 1. Evaluation of rubella virus E2 and C proteins in protection against rubella virus in a mouse model.
    Cusi MG; Valassina M; Bianchi S; Wunner W; Valensin PE
    Virus Res; 1995 Aug; 37(3):199-208. PubMed ID: 8533457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maturation of IgG avidity to individual rubella virus structural proteins.
    Nedeljkovic J; Jovanovic T; Oker-Blom C
    J Clin Virol; 2001 Aug; 22(1):47-54. PubMed ID: 11418352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunoblot analysis of natural and vaccine-induced IgG responses to rubella virus proteins expressed in insect cells.
    Nedeljkovic J; Jovanovic T; Mladjenovic S; Hedman K; Peitsaro N; Oker-Blom C
    J Clin Virol; 1999 Oct; 14(2):119-31. PubMed ID: 10588454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a rubella virus DNA vaccine.
    Pougatcheva SO; Abernathy ES; Vzorov AN; Compans RW; Frey TK
    Vaccine; 1999 Apr; 17(15-16):2104-12. PubMed ID: 10217613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A recombinant rubella virus E1 glycoprotein as a rubella vaccine candidate.
    Perrenoud G; Messerli F; Thierry AC; Beltraminelli N; Cousin P; Fasel N; Vallet V; Demotz S; Duchosal MA; Moulon C
    Vaccine; 2004 Dec; 23(4):480-8. PubMed ID: 15530696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping T-cell epitopes of rubella virus structural proteins E1, E2, and C recognized by T-cell lines and clones derived from infected and immunized populations.
    Ou D; Chong P; Tingle AJ; Gillam S
    J Med Virol; 1993 Jul; 40(3):175-83. PubMed ID: 7689090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rubella reimmunization: comparative analysis of the immunoglobulin G response to rubella virus vaccine in previously seronegative and seropositive individuals.
    Mitchell LA; Ho MK; Rogers JE; Tingle AJ; Marusyk RG; Weber JM; Duclos P; Tepper ML; Lacroix M; Zrein M
    J Clin Microbiol; 1996 Sep; 34(9):2210-8. PubMed ID: 8862587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaccines to prevent rubella.
    André FE; Florent G; du Pan RM
    Lancet; 1980 Mar; 1(8169):657-8. PubMed ID: 6102664
    [No Abstract]   [Full Text] [Related]  

  • 9. Identification of rubella virus T-cell epitopes recognized in anamnestic response to RA27/3 vaccine: associations with boost in neutralizing antibody titer.
    Mitchell LA; Tingle AJ; Décarie D; Shukin R
    Vaccine; 1999 May; 17(19):2356-65. PubMed ID: 10392617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparative studies of the immunogenic and reactogenic properties of various vaccines against rubella. I. Seroconversion and post-vaccination reactions in girls immunized against rubella with Almevax vaccine].
    Kańtoch M; Rudnicka H; Imbs D
    Przegl Epidemiol; 1985; 39(3-4):301-8. PubMed ID: 3832164
    [No Abstract]   [Full Text] [Related]  

  • 11. [Advances in molecular biology of rubella virus structural proteins].
    Cao J; Lu JC; Huang YF
    Zhonghua Nan Ke Xue; 2008 Jul; 14(7):645-9. PubMed ID: 18686389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoaffinity purification of baculovirus-expressed rubella virus E1 for diagnostic purposes.
    Lindqvist C; Schmidt M; Heinola J; Jaatinen R; Osterblad M; Salmi A; Keränen S; Akerman K; Oker-Blom C
    J Clin Microbiol; 1994 Sep; 32(9):2192-6. PubMed ID: 7814545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the reactogenicity and immunogenicity of the BRD-2 and RA27/3 live attenuated rubella vaccines.
    Wang SS; Han YR; Su WN; Chen J; Zhao K
    Vaccine; 1984 Dec; 2(4):277-80. PubMed ID: 6531968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective tolerance to the E1 protein of rubella virus in congenital rubella syndrome.
    Mauracher CA; Mitchell LA; Tingle AJ
    J Immunol; 1993 Aug; 151(4):2041-9. PubMed ID: 8345195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of rubella virus-specific antibody responses by using a new synthetic peptide-based enzyme-linked immunosorbent assay.
    Mitchell LA; Zhang T; Ho M; Décarie D; Tingle AJ; Zrein M; Lacroix M
    J Clin Microbiol; 1992 Jul; 30(7):1841-7. PubMed ID: 1629342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The key role of rubella virus glycoproteins in the formation of immune response, and perspectives on their use in the development of new recombinant vaccines.
    Petrova EK; Dmitrieva AA; Trifonova EA; Nikitin NA; Karpova OV
    Vaccine; 2016 Feb; 34(8):1006-11. PubMed ID: 26776468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy and immune response to rubella subunits vaccines.
    Cappel R; De Cuyper F
    Arch Virol; 1976; 50(3):207-13. PubMed ID: 1259596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain.
    Wolinsky JS; Sukholutsky E; Moore WT; Lovett A; McCarthy M; Adame B
    J Virol; 1993 Feb; 67(2):961-8. PubMed ID: 7678312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimeric derivatives of hepatitis B virus core particles carrying major epitopes of the rubella virus E1 glycoprotein.
    Skrastina D; Petrovskis I; Petraityte R; Sominskaya I; Ose V; Lieknina I; Bogans J; Sasnauskas K; Pumpens P
    Clin Vaccine Immunol; 2013 Nov; 20(11):1719-28. PubMed ID: 24006140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Enhancement of cellular immune response to DNA vaccine encoding hepatitis C virus core and envelope 2 fusion antigen by murine Fms-like tyrosine kinase 3 ligand].
    Ke JS; Zhao P; Cao J; Yu JP; Qi ZT
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):158-62. PubMed ID: 15966314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.