These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8534785)
21. EDRF inhibition attenuates the increase in pulmonary blood flow due to oxygen ventilation in fetal lambs. Moore P; Velvis H; Fineman JR; Soifer SJ; Heymann MA J Appl Physiol (1985); 1992 Nov; 73(5):2151-7. PubMed ID: 1474097 [TBL] [Abstract][Full Text] [Related]
22. Differential role of endothelium-derived nitric oxide in the modulation of the systemic and pulmonary circulation in lambs. Hibler S; Toga H; Raj JU Biol Neonate; 1996; 69(2):84-93. PubMed ID: 8713653 [TBL] [Abstract][Full Text] [Related]
24. Cerebral blood flow during hypoxemia and hemodilution in rabbits: different roles for nitric oxide? Todd MM; Farrell S; Wu B J Cereb Blood Flow Metab; 1997 Dec; 17(12):1319-25. PubMed ID: 9397031 [TBL] [Abstract][Full Text] [Related]
25. Major vasodilator role for nitric oxide in the gastrointestinal circulation of the mid-gestation fetal lamb. Fan WQ; Smolich JJ; Wild J; Yu VY; Walker AM Pediatr Res; 1998 Sep; 44(3):344-50. PubMed ID: 9727711 [TBL] [Abstract][Full Text] [Related]
26. Nitric oxide and fetal organ blood flow during normoxia and hypoxemia in endotoxin-treated fetal sheep. Coumans AB; Garnier Y; Supçun S; Jensen A; Berger R; Hasaart TH Obstet Gynecol; 2005 Jan; 105(1):145-55. PubMed ID: 15625156 [TBL] [Abstract][Full Text] [Related]
27. Diminished reserve for cerebral vasomotor response to L-arginine in the elderly: evaluation by transcranial Doppler sonography. Okamoto M; Etani H; Yagita Y; Kinoshita N; Nukada T Gerontology; 2001; 47(3):131-5. PubMed ID: 11340318 [TBL] [Abstract][Full Text] [Related]
28. Nitric oxide requirement for vasomotor nerve-induced vasodilatation and modulation of resting blood flow in muscle microcirculation. Persson MG; Wiklund NP; Gustafsson LE Acta Physiol Scand; 1991 Jan; 141(1):49-56. PubMed ID: 2053446 [TBL] [Abstract][Full Text] [Related]
29. Evidence for the role of nitric oxide in the circulation of the dental pulp. Lohinai Z; Balla I; Marczis J; Vass Z; Kovách AG J Dent Res; 1995 Aug; 74(8):1501-6. PubMed ID: 7560406 [TBL] [Abstract][Full Text] [Related]
30. Corticotropin-releasing hormone-induced vasodilatation in the human fetal-placental circulation: involvement of the nitric oxide-cyclic guanosine 3',5'-monophosphate-mediated pathway. Clifton VL; Read MA; Leitch IM; Giles WB; Boura AL; Robinson PJ; Smith R J Clin Endocrinol Metab; 1995 Oct; 80(10):2888-93. PubMed ID: 7559870 [TBL] [Abstract][Full Text] [Related]
31. Nitric oxide production affects cerebral perfusion and metabolism after deep hypothermic circulatory arrest. Tsui SS; Kirshbom PM; Davies MJ; Jacobs MT; Greeley WJ; Kern FH; Gaynor JW; Ungerleider RM Ann Thorac Surg; 1996 Jun; 61(6):1699-707. PubMed ID: 8651770 [TBL] [Abstract][Full Text] [Related]
32. Enhanced umbilical blood flow during acute hypoxemia after chronic umbilical cord compression: a role for nitric oxide. Gardner DS; Giussani DA Circulation; 2003 Jul; 108(3):331-5. PubMed ID: 12835209 [TBL] [Abstract][Full Text] [Related]
33. N omega-nitro-L-arginine influences cerebral metabolism in awake sheep. Iwamoto J; Yang SP; Yoshinaga M; Krasney E; Krasney J J Appl Physiol (1985); 1992 Dec; 73(6):2233-40. PubMed ID: 1362723 [TBL] [Abstract][Full Text] [Related]
34. The effect of combined hypoxemia and cephalic hypotension on fetal cerebral blood flow and metabolism. Hohimer AR; Chao CR; Bissonnette JM J Cereb Blood Flow Metab; 1991 Jan; 11(1):99-105. PubMed ID: 1984009 [TBL] [Abstract][Full Text] [Related]
35. Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide. Koedel U; Bernatowicz A; Paul R; Frei K; Fontana A; Pfister HW Ann Neurol; 1995 Mar; 37(3):313-23. PubMed ID: 7535035 [TBL] [Abstract][Full Text] [Related]
36. Exogenous endothelin-1 causes renal vasodilation in the fetal lamb. Bogaert GA; Kogan BA; Mevorach RA; Wong J; Gluckman GR; Fineman JR; Heymann MA J Urol; 1996 Aug; 156(2 Pt 2):847-53. PubMed ID: 8683799 [TBL] [Abstract][Full Text] [Related]
37. Role of ATP-sensitive potassium channels in ovine fetal pulmonary vascular tone. Cornfield DN; McQueston JA; McMurtry IF; Rodman DM; Abman SH Am J Physiol; 1992 Nov; 263(5 Pt 2):H1363-8. PubMed ID: 1443190 [TBL] [Abstract][Full Text] [Related]
38. Augmentation of blood flow through cerebral collaterals by inhibition of nitric oxide synthase. Muhonen MG; Heistad DD; Faraci FM; Loftus CM J Cereb Blood Flow Metab; 1994 Sep; 14(5):704-14. PubMed ID: 7520451 [TBL] [Abstract][Full Text] [Related]
39. Cerebral blood flow is reduced by N omega-nitro-L-arginine methyl ester during delayed hypoperfusion in cats. Clavier N; Kirsch JR; Hurn PD; Traystman RJ Am J Physiol; 1994 Jul; 267(1 Pt 2):H174-81. PubMed ID: 8048583 [TBL] [Abstract][Full Text] [Related]
40. Role of endothelins and nitric oxide in the pulmonary circulation of perinatal lambs during hyperoxia and hypoxia. Biarent D; Hubloue I; Bejjani G; Mélot C; Jespers P; Naeije R; Leeman M Pediatr Res; 2006 Jan; 59(1):131-6. PubMed ID: 16327012 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]