These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8534791)

  • 1. Event related potentials during covert orientation of visual attention: effects of cue validity and directionality.
    Wright MJ; Geffen GM; Geffen LB
    Biol Psychol; 1995 Oct; 41(2):183-202. PubMed ID: 8534791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Event-related potentials associated with covert orientation of visual attention in Parkinson's disease.
    Wright MJ; Geffen GM; Geffen LB
    Neuropsychologia; 1993 Dec; 31(12):1283-97. PubMed ID: 8127427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ERP evidence for selective drop in attentional costs in uncertain environments: challenging a purely premotor account of covert orienting of attention.
    Lasaponara S; Chica AB; Lecce F; Lupianez J; Doricchi F
    Neuropsychologia; 2011 Jul; 49(9):2648-57. PubMed ID: 21640737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial cueing, sensory gating and selective response preparation: an ERP study on visuo-spatial orienting.
    Eimer M
    Electroencephalogr Clin Neurophysiol; 1993; 88(5):408-20. PubMed ID: 7691565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faster, more intense! The relation between electrophysiological reflections of attentional orienting, sensory gain control, and speed of responding.
    Talsma D; Mulckhuyse M; Slagter HA; Theeuwes J
    Brain Res; 2007 Oct; 1178():92-105. PubMed ID: 17931607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Event-related potential indices of visual attention following moderate to severe closed head injury.
    Cremona-Meteyard SL; Geffen GM
    Brain Inj; 1994; 8(6):541-58. PubMed ID: 7987290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural processes underlying the orienting of attention without awareness.
    Giattino CM; Alam ZM; Woldorff MG
    Cortex; 2018 May; 102():14-25. PubMed ID: 28826603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deconstructing Reorienting of Attention: Cue Predictiveness Modulates the Inhibition of the No-target Side and the Hemispheric Distribution of the P1 Response to Invalid Targets.
    Doricchi F; Pellegrino M; Marson F; Pinto M; Caratelli L; Cestari V; Rossi-Arnaud C; Lasaponara S
    J Cogn Neurosci; 2020 Jun; 32(6):1046-1060. PubMed ID: 31967519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covert orienting of attention in macaques. I. Effects of behavioral context.
    Bowman EM; Brown VJ; Kertzman C; Schwarz U; Robinson DL
    J Neurophysiol; 1993 Jul; 70(1):431-43. PubMed ID: 8360720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparatory slow potentials and event-related potentials in an auditory cued attention task.
    Golob EJ; Pratt H; Starr A
    Clin Neurophysiol; 2002 Oct; 113(10):1544-57. PubMed ID: 12350430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orienting attention in time. Modulation of brain potentials.
    Miniussi C; Wilding EL; Coull JT; Nobre AC
    Brain; 1999 Aug; 122 ( Pt 8)():1507-18. PubMed ID: 10430834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of the thalamic CM-Pf complex in attentional orienting.
    Minamimoto T; Kimura M
    J Neurophysiol; 2002 Jun; 87(6):3090-101. PubMed ID: 12037210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological correlates to cued attentional shifts in the visual and auditory modalities.
    Hugdahl K; Nordby H
    Behav Neural Biol; 1994 Jul; 62(1):21-32. PubMed ID: 7945141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex.
    Dassanayake TL; Michie PT; Fulham R
    Int J Psychophysiol; 2016 Jul; 105():9-16. PubMed ID: 27114044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in predictive cuing modulate the hemispheric distribution of the P1 inhibitory response to attentional targets.
    Lasaponara S; D' Onofrio M; Dragone A; Pinto M; Caratelli L; Doricchi F
    Neuropsychologia; 2017 May; 99():156-164. PubMed ID: 28283318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attentional orienting induced by arrows and eye-gaze compared with an endogenous cue.
    Brignani D; Guzzon D; Marzi CA; Miniussi C
    Neuropsychologia; 2009 Jan; 47(2):370-81. PubMed ID: 18926835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ERP-study on the time course of disgust-motivated spatial avoidance.
    Zimmer U; Rosenzopf H; Poglitsch C; Ischebeck A
    Biol Psychol; 2019 May; 144():20-27. PubMed ID: 30878455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial orienting and focused attention in attention deficit hyperactivity disorder.
    Novak GP; Solanto M; Abikoff H
    Psychophysiology; 1995 Nov; 32(6):546-59. PubMed ID: 8524989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Sensory gating" as a mechanism for visuospatial orienting: electrophysiological evidence from trial-by-trial cuing experiments.
    Eimer M
    Percept Psychophys; 1994 Jun; 55(6):667-75. PubMed ID: 8058454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.