These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8534795)

  • 1. Equilibration and exchange of fluorescently labeled molecules in skinned skeletal muscle fibers visualized by confocal microscopy.
    Kraft T; Messerli M; Rothen-Rutishauser B; Perriard JC; Wallimann T; Brenner B
    Biophys J; 1995 Oct; 69(4):1246-58. PubMed ID: 8534795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle: implications for regulation of muscle contraction.
    Brenner B; Chalovich JM
    Biophys J; 1999 Nov; 77(5):2692-708. PubMed ID: 10545369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of fluorescently labeled actin-bound cross-bridges in actively contracting myofibrils.
    Cooper WC; Chrin LR; Berger CL
    Biophys J; 2000 Mar; 78(3):1449-57. PubMed ID: 10692330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle.
    Brenner B; Kraft T; Yu LC; Chalovich JM
    Biophys J; 1999 Nov; 77(5):2677-91. PubMed ID: 10545368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of creatine kinase to glycolytic enzymes at the sarcomeric I-band of skeletal muscle: a biochemical study in situ.
    Kraft T; Hornemann T; Stolz M; Nier V; Wallimann T
    J Muscle Res Cell Motil; 2000; 21(7):691-703. PubMed ID: 11227796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium alone does not fully activate the thin filament for S1 binding to rigor myofibrils.
    Swartz DR; Moss RL; Greaser ML
    Biophys J; 1996 Oct; 71(4):1891-904. PubMed ID: 8889164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural features of cross-bridges in isometrically contracting skeletal muscle.
    Kraft T; Mattei T; Radocaj A; Piep B; Nocula C; Furch M; Brenner B
    Biophys J; 2002 May; 82(5):2536-47. PubMed ID: 11964242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state fluorescence polarization studies of the orientation of myosin regulatory light chains in single skeletal muscle fibers using pure isomers of iodoacetamidotetramethylrhodamine.
    Sabido-David C; Brandmeier B; Craik JS; Corrie JE; Trentham DR; Irving M
    Biophys J; 1998 Jun; 74(6):3083-92. PubMed ID: 9635762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of actin conformation and inhibition of actin filament velocity by calponin.
    Borovikov YuS ; Horiuchi KY; Avrova SV; Chacko S
    Biochemistry; 1996 Oct; 35(43):13849-57. PubMed ID: 8901528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin filament cooperativity as a major determinant of shortening velocity in skeletal muscle fibers.
    Iwamoto H
    Biophys J; 1998 Mar; 74(3):1452-64. PubMed ID: 9512041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and orientation of rhodamine-phalloidin bound to thin filaments in skeletal and cardiac myofibrils.
    Zhukarev V; Sanger JM; Sanger JW; Goldman YE; Shuman H
    Cell Motil Cytoskeleton; 1997; 37(4):363-77. PubMed ID: 9258508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The isoenzyme-diagnostic regions of muscle-type creatine kinase, the M-260 and M-300 box, are not responsible for its binding to the myofibrillar M-band.
    Stolz M; Kraft T; Wallimann T
    Eur J Cell Biol; 1998 Sep; 77(1):1-9. PubMed ID: 9808283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation of cross-bridges in skeletal muscle measured with a hydrophobic probe.
    Xiao M; Borejdo J
    Biophys J; 1997 May; 72(5):2268-74. PubMed ID: 9129830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light microscopy and image analysis of thin filament lengths utilizing dual probes on beef, chicken, and rabbit myofibrils.
    Ringkob TP; Swartz DR; Greaser ML
    J Anim Sci; 2004 May; 82(5):1445-53. PubMed ID: 15144085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speeds of actin translocation in vitro by myosins extracted from single rat muscle fibres of different types.
    Canepari M; Rossi R; Pellegrino MA; Reggiani C; Bottinelli R
    Exp Physiol; 1999 Jul; 84(4):803-6. PubMed ID: 10481236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ADP on cross-bridge-dependent activation of myofibrillar thin filaments.
    Zhang D; Yancey KW; Swartz DR
    Biophys J; 2000 Jun; 78(6):3103-11. PubMed ID: 10827987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of thin filament activation on the attachment of weak binding cross-bridges: A two-dimensional x-ray diffraction study on single muscle fibers.
    Kraft T; Xu S; Brenner B; Yu LC
    Biophys J; 1999 Mar; 76(3):1494-513. PubMed ID: 10049330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of contraction kinetics in skinned skeletal muscle fibers by calcium and troponin C.
    Luo Y; Rall JA
    Arch Biochem Biophys; 2006 Dec; 456(2):119-26. PubMed ID: 16764818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor protein function in skeletal muscle-a multiple scale approach to contractility.
    von Wegner F; Schurmann S; Fink RH; Vogel M; Friedrich O
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1632-42. PubMed ID: 19574163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.