BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8534809)

  • 1. Localized contact formation by erythrocyte membranes: electrostatic effects.
    Thomas NE; Coakley WT
    Biophys J; 1995 Oct; 69(4):1387-401. PubMed ID: 8534809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of polymer concentration and molecular weight and of enzymic glycocalyx modification on erythrocyte interaction in dextran solutions.
    Baker AJ; Coakley WT; Gallez D
    Eur Biophys J; 1993; 22(1):53-62. PubMed ID: 7685691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-membrane interactions: parallel membranes or patterned discrete contacts.
    Darmani H; Coakley WT
    Biochim Biophys Acta; 1990 Jan; 1021(2):182-90. PubMed ID: 1689180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic strength dependence of localized contact formation between membranes: nonlinear theory and experiment.
    Coakley WT; Gallez D; de Souza ER; Gauci H
    Biophys J; 1999 Aug; 77(2):817-28. PubMed ID: 10423428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocyte agglutination by wheat germ agglutinin: ionic strength dependence of the contact seam topology.
    Rolfe M; Parmar A; Hoy TG; Coakley WT
    Mol Membr Biol; 2001; 18(2):169-76. PubMed ID: 11463209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact patterns in concanavalin A agglutinated erythrocytes.
    Darmani H; Coakley WT
    Cell Biophys; 1991 Feb; 18(1):1-13. PubMed ID: 1725500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real time observations of polylysine, dextran and polyethylene glycol induced mutual adhesion of erythrocytes held in suspension in an ultrasonic standing wave field.
    Tilley D; Coakley WT; Gould RK; Payne SE; Hewison LA
    Eur Biophys J; 1987; 14(8):499-507. PubMed ID: 2441984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The lateral separation of contacts on erythrocytes agglutinated by polylysine.
    Thomas NE; Coakley WT; Akay G
    Cell Biophys; 1992; 20(2-3):125-47. PubMed ID: 1285296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detachment of agglutinin-bonded red blood cells. II. Mechanical energies to separate large contact areas.
    Evans E; Berk D; Leung A; Mohandas N
    Biophys J; 1991 Apr; 59(4):849-60. PubMed ID: 2065189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.
    Berk D; Evans E
    Biophys J; 1991 Apr; 59(4):861-72. PubMed ID: 2065190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phagocytosis by Acanthamoeba castellanii: ionic strength dependence of the probability of cell attachment; ingestion and contact seam morphology.
    Obaray N; Coakley WT
    Colloids Surf B Biointerfaces; 2001 Oct; 22(2):127-140. PubMed ID: 11451659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically sensitized erythrocytes for hemagglutination reactions.
    Harrington JJ; Gordon RE; Ross JP; Kobilinsky L
    J Forensic Sci; 1990 Sep; 35(5):1115-24. PubMed ID: 1700058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of successive modes of erythrocyte stability and instability in the presence of various polymers.
    van Oss CJ; Coakley WT
    Cell Biophys; 1988 Oct; 13(2):141-50. PubMed ID: 2464434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attraction, deformation and contact of membranes induced by low frequency electric fields.
    Dimitrov DS; Apostolova MA; Sowers AE
    Biochim Biophys Acta; 1990 Apr; 1023(3):389-97. PubMed ID: 2334730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and characterization of Escherichia coli enterohemolysin and its effects on the structure of erythrocyte membranes.
    Jürgens D; Ozel M; Takaisi-Kikuni NB
    Cell Biol Int; 2002; 26(2):175-86. PubMed ID: 11846447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosol-membrane interface of human erythrocytes. A resonance energy transfer study.
    Eisinger J; Flores J
    Biophys J; 1983 Mar; 41(3):367-79. PubMed ID: 6838975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sharp cell surface conformational transition at low ionic strength changes the nature of the adhesion of enzyme-treated red blood cells to a hydrocarbon interface.
    Donath E; Gingell D
    J Cell Sci; 1983 Sep; 63():113-24. PubMed ID: 6630306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and thermotropic phase behaviour of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes.
    Quinn PJ; Tessier C; Rainteau D; Koumanov KS; Wolf C
    Biochim Biophys Acta; 2005 Jul; 1713(1):5-14. PubMed ID: 15963456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of electrostatic and structural properties of the cell surface in the energetics of cell-cell and cell-surface interaction.
    Lerche D
    Ann N Y Acad Sci; 1983; 416():66-81. PubMed ID: 6375513
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.