These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 8534832)

  • 1. Photoelectron imaging of cells: photoconductivity extends the range of applicability.
    Habliston DL; Hedberg KK; Birrell GB; Rempfer GF; Griffith OH
    Biophys J; 1995 Oct; 69(4):1615-24. PubMed ID: 8534832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectron imaging of viruses and DNA: evaluation of substrates by unidirectional low angle shadowing and photoemission current measurements.
    Birrell GB; Habliston DL; Griffith OH
    Biophys J; 1994 Nov; 67(5):2041-7. PubMed ID: 7858141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential role of photoelectron microscopy in the analysis of biological surfaces.
    Griffith OH; Nadakavukaren KK; Jost PC
    Scan Electron Microsc; 1984; (Pt 2):633-44. PubMed ID: 6541368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectron microscopy of cell surfaces.
    Dam RJ; Nadakavukaren KK; Griffith OH
    J Microsc; 1977 Nov; 111(2):211-7. PubMed ID: 563923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectron imaging in cell biology.
    Griffith OH; Rempfer GF
    Annu Rev Biophys Biophys Chem; 1985; 14():113-30. PubMed ID: 3890877
    [No Abstract]   [Full Text] [Related]  

  • 6. A high vacuum photoelectron microscope for the study of biological specimens.
    Griffith OH; Rempfer GF; Lesch GH
    Scan Electron Microsc; 1981; (Pt 2):123-30. PubMed ID: 7323723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectron microscopy of cell surface topography.
    Nadakavukaren KK; Rempfer GF; Griffith OH
    J Microsc; 1981 Jun; 122(Pt 3):301-7. PubMed ID: 7241590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early phorbol ester induced release of cell surface fibronectin: direct observation by photoelectron microscopy.
    Habliston DL; Birrell GB; Hedberg KK; Griffith OH
    Eur J Cell Biol; 1986 Aug; 41(2):222-9. PubMed ID: 3530763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological applications of photoelectron imaging: a practical perspective.
    Birrell GB; Hedberg KK; Habliston DL; Griffith OH
    Ultramicroscopy; 1991 May; 36(1-3):235-51. PubMed ID: 1715619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the possibility of obtaining a physical map of genomes by photoelectron imaging.
    Griffith OH; Habliston DL; Birrell GB; Skoczylas WP
    Biophys J; 1990 May; 57(5):935-41. PubMed ID: 2140278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of immunolabeled membrane receptors in uncoated SEM specimens.
    Heinzmann U; Reninger A; Autrata R; Höfler H
    Scanning; 1994; 16(4):241-5. PubMed ID: 7921366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of an ultrahigh-resolution scanning electron microscope (UHS-T1) to biological specimens.
    Tanaka K; Mitsushima A; Kashima Y; Nakadera T; Osatake H
    J Electron Microsc Tech; 1989 Jun; 12(2):146-54. PubMed ID: 2760684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges in applying photoemission electron microscopy to biological systems.
    Peles DN; Simon JD
    Photochem Photobiol; 2009; 85(1):8-20. PubMed ID: 19076307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Picosecond multiphoton scanning near-field optical microscopy.
    Jenei A; Kirsch AK; Subramaniam V; Arndt-Jovin DJ; Jovin TM
    Biophys J; 1999 Feb; 76(2):1092-100. PubMed ID: 9916041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging plant nuclei and membrane-associated cytoskeleton by field emission scanning electron microscopy.
    Fišerová J; Goldberg MW
    Methods Mol Biol; 2014; 1080():171-81. PubMed ID: 24132428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging.
    Retnakumari A; Setua S; Menon D; Ravindran P; Muhammed H; Pradeep T; Nair S; Koyakutty M
    Nanotechnology; 2010 Feb; 21(5):055103. PubMed ID: 20023317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in cell surfaces of estrogen treated breast cancer cells detected by a combined instrument for far-field and near-field microscopy.
    Perner P; Rapp A; Dressler C; Wollweber L; Beuthan J; Greulich KO; Hausmann M
    Anal Cell Pathol; 2002; 24(2-3):89-100. PubMed ID: 12446958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution SEM imaging of gold nanoparticles in cells and tissues.
    Goldstein A; Soroka Y; Frušić-Zlotkin M; Popov I; Kohen R
    J Microsc; 2014 Dec; 256(3):237-47. PubMed ID: 25228335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth of information in photoelectron microscopy.
    Houle WA; Engel W; Willig F; Rempfer GF; Griffith OH
    Ultramicroscopy; 1982; 7(4):371-80. PubMed ID: 7112720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlative light and electron microscopy: from live cell dynamic to 3D ultrastructure.
    Spiegelhalter C; Laporte JF; Schwab Y
    Methods Mol Biol; 2014; 1117():485-501. PubMed ID: 24357376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.