These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8534839)

  • 1. Crowding-induced organization of cytoskeletal elements. III. Spontaneous bundling and sorting of self-assembled filaments with different flexibilities.
    Kulp DT; Herzfeld J
    Biophys Chem; 1995 Dec; 57(1):93-102. PubMed ID: 8534839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crowding-induced organization of cytoskeletal elements: I. Spontaneous demixing of cytosolic proteins and model filaments to form filament bundles.
    Madden TL; Herzfeld J
    Biophys J; 1993 Sep; 65(3):1147-54. PubMed ID: 8241394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crowding-induced organization in cells: spontaneous alignment and sorting of filaments with physiological control points.
    Herzfeld J
    J Mol Recognit; 2004; 17(5):376-81. PubMed ID: 15362095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crowding-induced organization of cytoskeletal elements: II. Dissolution of spontaneously formed filament bundles by capping proteins.
    Madden TL; Herzfeld J
    J Cell Biol; 1994 Jul; 126(1):169-74. PubMed ID: 8027175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial reconstruction of the microvillus core bundle: characterization of villin as a Ca++-dependent, actin-bundling/depolymerizing protein.
    Matsudaira PT; Burgess DR
    J Cell Biol; 1982 Mar; 92(3):648-56. PubMed ID: 7200986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural interaction of cytoskeletal components.
    Schliwa M; van Blerkom J
    J Cell Biol; 1981 Jul; 90(1):222-35. PubMed ID: 7019221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural polymorphism of the cytoskeleton: a model of linker-assisted filament aggregation.
    Borukhov I; Bruinsma RF; Gelbart WM; Liu AJ
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3673-8. PubMed ID: 15731355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alignment of actin filament streams driven by myosin motors in crowded environments.
    Iwase T; Sasaki Y; Hatori K
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2717-2725. PubMed ID: 28754385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the Dictyostelium 30 kDa protein in actin bundle formation.
    Furukawa R; Fechheimer M
    Biochemistry; 1996 Jun; 35(22):7224-32. PubMed ID: 8679551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of filamin and controlled linear shear on the microheterogeneity of F-actin/gelsolin gels.
    Cortese JD; Frieden C
    Cell Motil Cytoskeleton; 1990; 17(3):236-49. PubMed ID: 2176572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bundling of actin filaments by alpha-actinin depends on its molecular length.
    Meyer RK; Aebi U
    J Cell Biol; 1990 Jun; 110(6):2013-24. PubMed ID: 2351691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell shape can mediate the spatial organization of the bacterial cytoskeleton.
    Wang S; Wingreen NS
    Biophys J; 2013 Feb; 104(3):541-52. PubMed ID: 23442905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels.
    Wachsstock DH; Schwartz WH; Pollard TD
    Biophys J; 1993 Jul; 65(1):205-14. PubMed ID: 8369430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From branched networks of actin filaments to bundles.
    Brill-Karniely Y; Ideses Y; Bernheim-Groswasser A; Ben-Shaul A
    Chemphyschem; 2009 Nov; 10(16):2818-27. PubMed ID: 19847840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of septin filament flexibility and bundling by subunit composition and nucleotide interactions.
    Khan A; Newby J; Gladfelter AS
    Mol Biol Cell; 2018 Mar; 29(6):702-712. PubMed ID: 29321251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SB401, a pollen-specific protein from Solanum berthaultii, binds to and bundles microtubules and F-actin.
    Huang S; Jin L; Du J; Li H; Zhao Q; Ou G; Ao G; Yuan M
    Plant J; 2007 Aug; 51(3):406-18. PubMed ID: 17559515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale study of counterion-induced attraction and bundle formation of F-actin using an Ising-like mean-field model.
    Yu X; Carlsson AE
    Biophys J; 2003 Dec; 85(6):3532-43. PubMed ID: 14645048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the flexibility of intermediate filaments by atomic force microscopy.
    Mücke N; Kreplak L; Kirmse R; Wedig T; Herrmann H; Aebi U; Langowski J
    J Mol Biol; 2004 Jan; 335(5):1241-50. PubMed ID: 14729340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The filamentous actin cross-linking/bundling activity of mammalian formins.
    Esue O; Harris ES; Higgs HN; Wirtz D
    J Mol Biol; 2008 Dec; 384(2):324-34. PubMed ID: 18835565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.