BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8534918)

  • 1. Functional expression of a vertebrate inwardly rectifying K+ channel in yeast.
    Tang W; Ruknudin A; Yang WP; Shaw SY; Knickerbocker A; Kurtz S
    Mol Biol Cell; 1995 Sep; 6(9):1231-40. PubMed ID: 8534918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning and expression of an inwardly rectifying K(+) channel from bovine corneal endothelial cells.
    Yang D; Sun F; Thomas LL; Offord J; MacCallum DK; Dawson DC; Hughes BA; Ernst SA
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2936-44. PubMed ID: 10967048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gating mechanism of the cloned inward rectifier potassium channel from mouse heart.
    Ishihara K; Hiraoka M
    J Membr Biol; 1994 Oct; 142(1):55-64. PubMed ID: 7707353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of an inwardly rectifying K+ channel from HeLa cells.
    Klein H; Garneau L; Coady M; Lemay G; Lapointe JY; Sauvé R
    J Membr Biol; 1999 Jan; 167(1):43-52. PubMed ID: 9878074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression of a novel human brain inward rectifier potassium channel.
    Makhina EN; Kelly AJ; Lopatin AN; Mercer RW; Nichols CG
    J Biol Chem; 1994 Aug; 269(32):20468-74. PubMed ID: 8051145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Saccharomyces cerevisiae for patch-clamp analysis of heterologous membrane proteins: characterization of Kat1, an inward-rectifying K+ channel from Arabidopsis thaliana, and comparison with endogeneous yeast channels and carriers.
    Bertl A; Anderson JA; Slayman CL; Gaber RF
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2701-5. PubMed ID: 7708709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ROMK by extracellular cations.
    Sackin H; Syn S; Palmer LG; Choe H; Walters DE
    Biophys J; 2001 Feb; 80(2):683-97. PubMed ID: 11159436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of microphysiometry for analysis of heterologous ion channels expressed in yeast.
    Hahnenberger KM; Krystal M; Esposito K; Tang W; Kurtz S
    Nat Biotechnol; 1996 Jul; 14(7):880-3. PubMed ID: 9631015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of strong modifications in cation selectivity in an Arabidopsis inward rectifying potassium channel by mutant selection in yeast.
    Uozumi N; Gassmann W; Cao Y; Schroeder JI
    J Biol Chem; 1995 Oct; 270(41):24276-81. PubMed ID: 7592636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae.
    Goldstein SA; Price LA; Rosenthal DN; Pausch MH
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13256-61. PubMed ID: 8917578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes.
    Hartje S; Zimmermann S; Klonus D; Mueller-Roeber B
    Planta; 2000 Apr; 210(5):723-31. PubMed ID: 10805443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional expression of the voltage-gated neuronal mammalian potassium channel rat ether à go-go1 in yeast.
    Schwarzer S; Kolacna L; Lichtenberg-Fraté H; Sychrova H; Ludwig J
    FEMS Yeast Res; 2008 May; 8(3):405-13. PubMed ID: 18248412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels.
    Taglialatela M; Wible BA; Caporaso R; Brown AM
    Science; 1994 May; 264(5160):844-7. PubMed ID: 8171340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and functional expression of an inwardly rectifying K+ channel from human atrium.
    Wible BA; De Biasi M; Majumder K; Taglialatela M; Brown AM
    Circ Res; 1995 Mar; 76(3):343-50. PubMed ID: 7859381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers.
    Sabirov RZ; Tominaga T; Miwa A; Okada Y; Oiki S
    J Gen Physiol; 1997 Dec; 110(6):665-77. PubMed ID: 9382895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary structure and functional expression of a mouse inward rectifier potassium channel.
    Kubo Y; Baldwin TJ; Jan YN; Jan LY
    Nature; 1993 Mar; 362(6416):127-33. PubMed ID: 7680768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel.
    Kubo Y; Reuveny E; Slesinger PA; Jan YN; Jan LY
    Nature; 1993 Aug; 364(6440):802-6. PubMed ID: 8355805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1.
    Becker D; Dreyer I; Hoth S; Reid JD; Busch H; Lehnen M; Palme K; Hedrich R
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8123-8. PubMed ID: 8755614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, localization, and functional expression of a human brain inward rectifier potassium channel (hIRK1).
    Tang W; Qin CL; Yang XC
    Recept Channels; 1995; 3(3):175-83. PubMed ID: 8821791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-expression of human Kir3 subunits can yield channels with different functional properties.
    Schoots O; Wilson JM; Ethier N; Bigras E; Hebert TE; Van Tol HH
    Cell Signal; 1999 Dec; 11(12):871-83. PubMed ID: 10659995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.