These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 8535140)
1. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Mitchell TK; Dean RA Plant Cell; 1995 Nov; 7(11):1869-78. PubMed ID: 8535140 [TBL] [Abstract][Full Text] [Related]
2. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Adachi K; Hamer JE Plant Cell; 1998 Aug; 10(8):1361-74. PubMed ID: 9707535 [TBL] [Abstract][Full Text] [Related]
3. Identification of proteins that interact with two regulators of appressorium development, adenylate cyclase and cAMP-dependent protein kinase A, in the rice blast fungus Magnaporthe grisea. Kulkarni RD; Dean RA Mol Genet Genomics; 2004 Jan; 270(6):497-508. PubMed ID: 14648199 [TBL] [Abstract][Full Text] [Related]
4. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. Li Y; Zhang X; Hu S; Liu H; Xu JR PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765 [TBL] [Abstract][Full Text] [Related]
5. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling. Marroquin-Guzman M; Wilson RA PLoS Pathog; 2015 Apr; 11(4):e1004851. PubMed ID: 25901357 [TBL] [Abstract][Full Text] [Related]
6. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Choi W; Dean RA Plant Cell; 1997 Nov; 9(11):1973-83. PubMed ID: 9401122 [TBL] [Abstract][Full Text] [Related]
7. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Xu JR; Hamer JE Genes Dev; 1996 Nov; 10(21):2696-706. PubMed ID: 8946911 [TBL] [Abstract][Full Text] [Related]
8. Subcellular compartmentation, interdependency and dynamics of the cyclic AMP-dependent PKA subunits during pathogenic differentiation in rice blast. Selvaraj P; Tham HF; Ramanujam R; Naqvi NI Mol Microbiol; 2017 Aug; 105(3):484-504. PubMed ID: 28544028 [TBL] [Abstract][Full Text] [Related]
9. A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species. Zhang N; Zhao S; Shen Q Mycologia; 2011; 103(6):1267-76. PubMed ID: 21642347 [TBL] [Abstract][Full Text] [Related]
10. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Nishimura M; Park G; Xu JR Mol Microbiol; 2003 Oct; 50(1):231-43. PubMed ID: 14507377 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Soanes DM; Kershaw MJ; Cooley RN; Talbot NJ Mol Plant Microbe Interact; 2002 Dec; 15(12):1253-67. PubMed ID: 12481998 [TBL] [Abstract][Full Text] [Related]
12. Colletotrichum trifolii mutants disrupted in the catalytic subunit of cAMP-dependent protein kinase are nonpathogenic. Yang Z; Dickman MB Mol Plant Microbe Interact; 1999 May; 12(5):430-9. PubMed ID: 10226376 [TBL] [Abstract][Full Text] [Related]
13. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Beckerman JL; Ebbole DJ Mol Plant Microbe Interact; 1996 Aug; 9(6):450-6. PubMed ID: 8755621 [TBL] [Abstract][Full Text] [Related]
14. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Skamnioti P; Gurr SJ Plant Cell; 2007 Aug; 19(8):2674-89. PubMed ID: 17704215 [TBL] [Abstract][Full Text] [Related]
15. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Ahn N; Kim S; Choi W; Im KH; Lee YH Mol Cells; 2004 Feb; 17(1):166-73. PubMed ID: 15055545 [TBL] [Abstract][Full Text] [Related]
16. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Irie T; Matsumura H; Terauchi R; Saitoh H Mol Genet Genomics; 2003 Nov; 270(2):181-9. PubMed ID: 12955499 [TBL] [Abstract][Full Text] [Related]
17. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Clergeot PH; Gourgues M; Cots J; Laurans F; Latorse MP; Pepin R; Tharreau D; Notteghem JL; Lebrun MH Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6963-8. PubMed ID: 11391010 [TBL] [Abstract][Full Text] [Related]
18. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Zhao X; Kim Y; Park G; Xu JR Plant Cell; 2005 Apr; 17(4):1317-29. PubMed ID: 15749760 [TBL] [Abstract][Full Text] [Related]
19. MoRgs3 functions in intracellular reactive oxygen species perception-integrated cAMP signaling to promote appressorium formation in Zhang R; Liu X; Xu J; Chen C; Tang Z; Wu C; Li X; Su L; Liu M; Yang L; Li G; Zhang H; Wang P; Zhang Z mBio; 2024 Aug; 15(8):e0099624. PubMed ID: 38980036 [TBL] [Abstract][Full Text] [Related]
20. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae. Zhou X; Zhao X; Xue C; Dai Y; Xu JR Mol Plant Microbe Interact; 2014 Sep; 27(9):996-1004. PubMed ID: 24835254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]