These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 8535140)
21. The catalytic subunit of cAMP-dependent protein kinase A StPKA-c contributes to conidiation and early invasion in the phytopathogenic fungus Setosphaeria turcica. Shen S; Hao Z; Gu S; Wang J; Cao Z; Li Z; Wang Q; Li P; Hao J; Dong J FEMS Microbiol Lett; 2013 Jun; 343(2):135-44. PubMed ID: 23557024 [TBL] [Abstract][Full Text] [Related]
22. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Park G; Xue C; Zhao X; Kim Y; Orbach M; Xu JR Plant Cell; 2006 Oct; 18(10):2822-35. PubMed ID: 17056708 [TBL] [Abstract][Full Text] [Related]
23. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Fudal I; Collemare J; Böhnert HU; Melayah D; Lebrun MH Eukaryot Cell; 2007 Mar; 6(3):546-54. PubMed ID: 17142568 [TBL] [Abstract][Full Text] [Related]
24. Cpk2, a Catalytic Subunit of Cyclic AMP-PKA, Regulates Growth and Pathogenesis in Rice Blast. Selvaraj P; Shen Q; Yang F; Naqvi NI Front Microbiol; 2017; 8():2289. PubMed ID: 29209297 [TBL] [Abstract][Full Text] [Related]
25. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122 [TBL] [Abstract][Full Text] [Related]
26. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Liu S; Dean RA Mol Plant Microbe Interact; 1997 Dec; 10(9):1075-86. PubMed ID: 9390422 [TBL] [Abstract][Full Text] [Related]
27. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Froeliger EH; Carpenter BE Mol Gen Genet; 1996 Jul; 251(6):647-56. PubMed ID: 8757395 [TBL] [Abstract][Full Text] [Related]
28. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Odenbach D; Breth B; Thines E; Weber RW; Anke H; Foster AJ Mol Microbiol; 2007 Apr; 64(2):293-307. PubMed ID: 17378924 [TBL] [Abstract][Full Text] [Related]
29. Characterization and overexpression of the Aspergillus niger gene encoding the cAMP-dependent protein kinase catalytic subunit. Bencina M; Panneman H; Ruijter GJG; Legiša M; Visser J Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1211-1220. PubMed ID: 9141684 [TBL] [Abstract][Full Text] [Related]
30. Infection-related development in the rice blast fungus Magnaporthe grisea. Hamer JE; Talbot NJ Curr Opin Microbiol; 1998 Dec; 1(6):693-7. PubMed ID: 10066544 [TBL] [Abstract][Full Text] [Related]
31. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation. Kamakura T; Yamaguchi S; Saitoh K; Teraoka T; Yamaguchi I Mol Plant Microbe Interact; 2002 May; 15(5):437-44. PubMed ID: 12036274 [TBL] [Abstract][Full Text] [Related]
32. Purification, cloning and characterization of two xylanases from Magnaporthe grisea, the rice blast fungus. Wu SC; Kauffmann S; Darvill AG; Albersheim P Mol Plant Microbe Interact; 1995; 8(4):506-14. PubMed ID: 8589407 [TBL] [Abstract][Full Text] [Related]
33. Identification of a putative vacuolar serine protease gene in the rice blast fungus, Magnaporthe grisea. Fukiya S; Kuge T; Tanishima T; Sone T; Kamakura T; Yamaguchi I; Tomita F Biosci Biotechnol Biochem; 2002 Mar; 66(3):663-6. PubMed ID: 12005067 [TBL] [Abstract][Full Text] [Related]
34. MoRic8 Is a novel component of G-protein signaling during plant infection by the rice blast fungus Magnaporthe oryzae. Li Y; Yan X; Wang H; Liang S; Ma WB; Fang MY; Talbot NJ; Wang ZY Mol Plant Microbe Interact; 2010 Mar; 23(3):317-31. PubMed ID: 20121453 [TBL] [Abstract][Full Text] [Related]
35. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Li L; Xue C; Bruno K; Nishimura M; Xu JR Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959 [TBL] [Abstract][Full Text] [Related]
36. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Wang ZY; Jenkinson JM; Holcombe LJ; Soanes DM; Veneault-Fourrey C; Bhambra GK; Talbot NJ Biochem Soc Trans; 2005 Apr; 33(Pt 2):384-8. PubMed ID: 15787612 [TBL] [Abstract][Full Text] [Related]
37. Complementation of the Magnaporthe grisea deltacpkA mutation by the Blumeria graminis PKA-c gene: functional genetic analysis of an obligate plant pathogen. Bindslev L; Kershaw MJ; Talbot NJ; Oliver RP Mol Plant Microbe Interact; 2001 Dec; 14(12):1368-75. PubMed ID: 11768531 [TBL] [Abstract][Full Text] [Related]
38. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Kim S; Ahn IP; Rho HS; Lee YH Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997 [TBL] [Abstract][Full Text] [Related]
39. Involvement of cAMP and protein kinase A in conidial differentiation by Erysiphe graminis f. sp. hordei. Hall AA; Bindslev L; Rouster J; Rasmussen SW; Oliver RP; Gurr SJ Mol Plant Microbe Interact; 1999 Nov; 12(11):960-8. PubMed ID: 10550894 [TBL] [Abstract][Full Text] [Related]
40. Proper regulation of cyclic AMP-dependent protein kinase is required for growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium. Takano Y; Komeda K; Kojima K; Okuno T Mol Plant Microbe Interact; 2001 Oct; 14(10):1149-57. PubMed ID: 11605954 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]