BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 8535144)

  • 1. Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum.
    Brosch G; Ransom R; Lechner T; Walton JD; Loidl P
    Plant Cell; 1995 Nov; 7(11):1941-50. PubMed ID: 8535144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of histone deacetylases of plant, fungal and vertebrate cells.
    Lechner T; Lusser A; Brosch G; Eberharter A; Goralik-Schramel M; Loidl P
    Biochim Biophys Acta; 1996 Sep; 1296(2):181-8. PubMed ID: 8814225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymes involved in the dynamic equilibrium of core histone acetylation of Physarum polycephalum.
    López-Rodas G; Brosch G; Golderer G; Lindner H; Gröbner P; Loidl P
    FEBS Lett; 1992 Jan; 296(1):82-6. PubMed ID: 1730297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HC-toxin.
    Walton JD
    Phytochemistry; 2006 Jul; 67(14):1406-13. PubMed ID: 16839576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone Hyperacetylation in Maize in Response to Treatment with HC-Toxin or Infection by the Filamentous Fungus Cochliobolus carbonum.
    Ransom RF; Walton JD
    Plant Physiol; 1997 Nov; 115(3):1021-1027. PubMed ID: 12223856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular location of enzymes involved in core histone acetylation.
    Grabher A; Brosch G; Sendra R; Lechner T; Eberharter A; Georgieva EI; López-Rodas G; Franco L; Dietrich H; Loidl P
    Biochemistry; 1994 Dec; 33(49):14887-95. PubMed ID: 7993915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different types of maize histone deacetylases are distinguished by a highly complex substrate and site specificity.
    Kölle D; Brosch G; Lechner T; Pipal A; Helliger W; Taplick J; Loidl P
    Biochemistry; 1999 May; 38(21):6769-73. PubMed ID: 10346897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone acetylation in Zea mays. II. Biological significance of post-translational histone acetylation during embryo germination.
    Georgieva EI; López-Rodas G; Sendra R; Gröbner P; Loidl P
    J Biol Chem; 1991 Oct; 266(28):18751-60. PubMed ID: 1917998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone acetylation in Zea mays.I. Activities of histone acetyltransferases and histone deacetylases.
    López-Rodas G; Georgieva EI; Sendra R; Loidl P
    J Biol Chem; 1991 Oct; 266(28):18745-50. PubMed ID: 1917997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of inhibitor-resistant histone deacetylase activity in plant-pathogenic fungi.
    Baidyaroy D; Brosch G; Graessle S; Trojer P; Walton JD
    Eukaryot Cell; 2002 Aug; 1(4):538-47. PubMed ID: 12456002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inhibitor-resistant histone deacetylase in the plant pathogenic fungus Cochliobolus carbonum.
    Brosch G; Dangl M; Graessle S; Loidl A; Trojer P; Brandtner EM; Mair K; Walton JD; Baidyaroy D; Loidl P
    Biochemistry; 2001 Oct; 40(43):12855-63. PubMed ID: 11669622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fatty acid synthase gene in Cochliobolus carbonum required for production of HC-toxin, cyclo(D-prolyl-L-alanyl-D-alanyl-L-2-amino-9, 10-epoxi-8-oxodecanoyl).
    Ahn JH; Walton JD
    Mol Plant Microbe Interact; 1997 Mar; 10(2):207-14. PubMed ID: 9057326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RPD3-type histone deacetylases in maize embryos.
    Lechner T; Lusser A; Pipal A; Brosch G; Loidl A; Goralik-Schramel M; Sendra R; Wegener S; Walton JD; Loidl P
    Biochemistry; 2000 Feb; 39(7):1683-92. PubMed ID: 10677216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate and sequential site specificity of cytoplasmic histone acetyltransferases of maize and rat liver.
    Kölle D; Sarg B; Lindner H; Loidl P
    FEBS Lett; 1998 Jan; 421(2):109-14. PubMed ID: 9468289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of a high molecular weight histone deacetylase complex (HD2) of maize embryos.
    Brosch G; Lusser A; Goralik-Schramel M; Loidl P
    Biochemistry; 1996 Dec; 35(49):15907-14. PubMed ID: 8961957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reciprocal biological activities of the cyclic tetrapeptides chlamydocin and HC-toxin.
    Walton JD; Earle ED; Stähelin H; Grieder A; Hirota A; Suzuki A
    Experientia; 1985 Mar; 41(3):348-50. PubMed ID: 3918884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum.
    Pitkin JW; Panaccione DG; Walton JD
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1557-1565. PubMed ID: 8704997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Biochemical Phenotype for a Disease Resistance Gene of Maize.
    Meeley RB; Johal GS; Briggs SP; Walton JD
    Plant Cell; 1992 Jan; 4(1):71-77. PubMed ID: 12297630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the histone acetyltransferase B complex of maize embryos.
    Lusser A; Eberharter A; Loidl A; Goralik-Schramel M; Horngacher M; Haas H; Loidl P
    Nucleic Acids Res; 1999 Nov; 27(22):4427-35. PubMed ID: 10536152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal-induced protein hyperacetylation in maize identified by acetylome profiling.
    Walley JW; Shen Z; McReynolds MR; Schmelz EA; Briggs SP
    Proc Natl Acad Sci U S A; 2018 Jan; 115(1):210-215. PubMed ID: 29259121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.