These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 8535232)
1. Structural analysis of zinc substitutions in the active site of thermolysin. Holland DR; Hausrath AC; Juers D; Matthews BW Protein Sci; 1995 Oct; 4(10):1955-65. PubMed ID: 8535232 [TBL] [Abstract][Full Text] [Related]
2. Effects of cobalt-substitution of the active zinc ion in thermolysin on its activity and active-site microenvironment. Kuzuya K; Inouye K J Biochem; 2001 Dec; 130(6):783-8. PubMed ID: 11726278 [TBL] [Abstract][Full Text] [Related]
3. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity. Lesburg CA; Huang C; Christianson DW; Fierke CA Biochemistry; 1997 Dec; 36(50):15780-91. PubMed ID: 9398308 [TBL] [Abstract][Full Text] [Related]
4. Higher metal-ligand coordination in the catalytic site of cobalt-substituted Thermoanaerobacter brockii alcohol dehydrogenase lowers the barrier for enzyme catalysis. Kleifeld O; Rulísek L; Bogin O; Frenkel A; Havlas Z; Burstein Y; Sagi I Biochemistry; 2004 Jun; 43(22):7151-61. PubMed ID: 15170352 [TBL] [Abstract][Full Text] [Related]
5. Refined 1.8 A X-ray crystal structure of astacin, a zinc-endopeptidase from the crayfish Astacus astacus L. Structure determination, refinement, molecular structure and comparison with thermolysin. Gomis-Rüth FX; Stöcker W; Huber R; Zwilling R; Bode W J Mol Biol; 1993 Feb; 229(4):945-68. PubMed ID: 8445658 [TBL] [Abstract][Full Text] [Related]
6. Slow- and fast-binding inhibitors of thermolysin display different modes of binding: crystallographic analysis of extended phosphonamidate transition-state analogues. Holden HM; Tronrud DE; Monzingo AF; Weaver LH; Matthews BW Biochemistry; 1987 Dec; 26(26):8542-53. PubMed ID: 3442675 [TBL] [Abstract][Full Text] [Related]
7. Refined 2.0 A X-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin. Gomis-Rüth FX; Kress LF; Kellermann J; Mayr I; Lee X; Huber R; Bode W J Mol Biol; 1994 Jun; 239(4):513-44. PubMed ID: 8006965 [TBL] [Abstract][Full Text] [Related]
8. Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism. Mock WL; Stanford DJ Biochemistry; 1996 Jun; 35(23):7369-77. PubMed ID: 8652513 [TBL] [Abstract][Full Text] [Related]
9. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
10. Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans. Monzingo AF; Matthews BW Biochemistry; 1982 Jul; 21(14):3390-4. PubMed ID: 7052122 [TBL] [Abstract][Full Text] [Related]
11. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity. Tatsumi C; Hashida Y; Yasukawa K; Inouye K J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799 [TBL] [Abstract][Full Text] [Related]
12. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid. Sullivan SM; Holyoak T Biochemistry; 2007 Sep; 46(35):10078-88. PubMed ID: 17685635 [TBL] [Abstract][Full Text] [Related]
13. Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition-state analogues for zinc peptidases. Monzingo AF; Matthews BW Biochemistry; 1984 Nov; 23(24):5724-9. PubMed ID: 6395881 [TBL] [Abstract][Full Text] [Related]
14. Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry. Liu YH; Konermann L Biochemistry; 2008 Jun; 47(24):6342-51. PubMed ID: 18494500 [TBL] [Abstract][Full Text] [Related]
15. Structural influence of hydrophobic core residues on metal binding and specificity in carbonic anhydrase II. Cox JD; Hunt JA; Compher KM; Fierke CA; Christianson DW Biochemistry; 2000 Nov; 39(45):13687-94. PubMed ID: 11076507 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for the action of thermolysin. Tronrud DE; Roderick SL; Matthews BW Matrix Suppl; 1992; 1():107-11. PubMed ID: 1480010 [TBL] [Abstract][Full Text] [Related]
17. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin. Kusano M; Yasukawa K; Hashida Y; Inouye K J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052 [TBL] [Abstract][Full Text] [Related]
18. Effects of conversion of the zinc-binding motif sequence of thermolysin, HEXXH, to that of dipeptidyl peptidase III, HEXXXH, on the activity and stability of thermolysin. Menach E; Hashida Y; Yasukawa K; Inouye K Biosci Biotechnol Biochem; 2013; 77(9):1901-6. PubMed ID: 24018667 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of the binding of Z-L-tryptophan and Z-L-phenylalanine to thermolysin and stromelysin-1 in aqueous solutions. Ceruso M; Howe N; Malthouse JP Biochim Biophys Acta; 2012 Feb; 1824(2):303-10. PubMed ID: 22037182 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association. Wah DA; Romero A; Gallego del Sol F; Cavada BS; Ramos MV; Grangeiro TB; Sampaio AH; Calvete JJ J Mol Biol; 2001 Jul; 310(4):885-94. PubMed ID: 11453695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]