These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 8535522)
21. Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes. Georgatsou E; Alexandraki D Yeast; 1999 May; 15(7):573-84. PubMed ID: 10341420 [TBL] [Abstract][Full Text] [Related]
22. The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae. Casas C; Aldea M; Espinet C; Gallego C; Gil R; Herrero E Yeast; 1997 Jun; 13(7):621-37. PubMed ID: 9200812 [TBL] [Abstract][Full Text] [Related]
23. Overexpression of YAP2, coding for a new yAP protein, and YAP1 in Saccharomyces cerevisiae alleviates growth inhibition caused by 1,10-phenanthroline. Bossier P; Fernandes L; Rocha D; Rodrigues-Pousada C J Biol Chem; 1993 Nov; 268(31):23640-5. PubMed ID: 8226890 [TBL] [Abstract][Full Text] [Related]
24. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. Lesuisse E; Labbe P J Gen Microbiol; 1989 Feb; 135(2):257-63. PubMed ID: 11699493 [TBL] [Abstract][Full Text] [Related]
25. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron. Jensen LT; Culotta VC J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835 [TBL] [Abstract][Full Text] [Related]
26. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. Hassett R; Kosman DJ J Biol Chem; 1995 Jan; 270(1):128-34. PubMed ID: 7814363 [TBL] [Abstract][Full Text] [Related]
27. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Dancis A; Klausner RD; Hinnebusch AG; Barriocanal JG Mol Cell Biol; 1990 May; 10(5):2294-301. PubMed ID: 2183029 [TBL] [Abstract][Full Text] [Related]
28. Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae. Eide D; Guarente L J Gen Microbiol; 1992 Feb; 138(2):347-54. PubMed ID: 1564445 [TBL] [Abstract][Full Text] [Related]
29. A genetic approach to elucidating eukaryotic iron metabolism. Klausner RD; Dancis A FEBS Lett; 1994 Nov; 355(2):109-13. PubMed ID: 7982480 [TBL] [Abstract][Full Text] [Related]
30. Cadmium regulates copper homoeostasis by inhibiting the activity of Mac1, a transcriptional activator of the copper regulon, in Saccharomyces cerevisiae. Heo DH; Baek IJ; Kang HJ; Kim JH; Chang M; Jeong MY; Kim TH; Choi ID; Yun CW Biochem J; 2010 Oct; 431(2):257-65. PubMed ID: 20670216 [TBL] [Abstract][Full Text] [Related]
31. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. Kuge S; Jones N EMBO J; 1994 Feb; 13(3):655-64. PubMed ID: 8313910 [TBL] [Abstract][Full Text] [Related]
32. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Knight SAB; Lesuisse E; Stearman R; Klausner RD; Dancis A Microbiology (Reading); 2002 Jan; 148(Pt 1):29-40. PubMed ID: 11782496 [TBL] [Abstract][Full Text] [Related]
33. Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mösch HU; Kübler E; Krappmann S; Fink GR; Braus GH Mol Biol Cell; 1999 May; 10(5):1325-35. PubMed ID: 10233147 [TBL] [Abstract][Full Text] [Related]
34. Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Hammacott JE; Williams PH; Cashmore AM Microbiology (Reading); 2000 Apr; 146 ( Pt 4)():869-876. PubMed ID: 10784045 [TBL] [Abstract][Full Text] [Related]
35. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. Dix DR; Bridgham JT; Broderius MA; Byersdorfer CA; Eide DJ J Biol Chem; 1994 Oct; 269(42):26092-9. PubMed ID: 7929320 [TBL] [Abstract][Full Text] [Related]
36. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Dancis A; Roman DG; Anderson GJ; Hinnebusch AG; Klausner RD Proc Natl Acad Sci U S A; 1992 May; 89(9):3869-73. PubMed ID: 1570306 [TBL] [Abstract][Full Text] [Related]
37. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. Vido K; Spector D; Lagniel G; Lopez S; Toledano MB; Labarre J J Biol Chem; 2001 Mar; 276(11):8469-74. PubMed ID: 11078740 [TBL] [Abstract][Full Text] [Related]
38. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress. Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143 [TBL] [Abstract][Full Text] [Related]
39. Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport. Inman RS; Coughlan MM; Wessling-Resnick M Biochemistry; 1994 Oct; 33(39):11850-7. PubMed ID: 7918403 [TBL] [Abstract][Full Text] [Related]
40. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex. Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]