These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase. St John FJ; Hurlbert JC; Rice JD; Preston JF; Pozharski E J Mol Biol; 2011 Mar; 407(1):92-109. PubMed ID: 21256135 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase. Gaiser OJ; Piotukh K; Ponnuswamy MN; Planas A; Borriss R; Heinemann U J Mol Biol; 2006 Apr; 357(4):1211-25. PubMed ID: 16483609 [TBL] [Abstract][Full Text] [Related]
7. Structure and function of carbohydrate-binding module families 13 and 42 of glycoside hydrolases, comprising a β-trefoil fold. Fujimoto Z Biosci Biotechnol Biochem; 2013; 77(7):1363-71. PubMed ID: 23832347 [TBL] [Abstract][Full Text] [Related]
8. Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases. Cuyvers S; Dornez E; Delcour JA; Courtin CM Crit Rev Biotechnol; 2012 Jun; 32(2):93-107. PubMed ID: 21711082 [TBL] [Abstract][Full Text] [Related]
9. An elaboration on the syn-anti proton donor concept of glycoside hydrolases: electrostatic stabilisation of the transition state as a general strategy. Nerinckx W; Desmet T; Piens K; Claeyssens M FEBS Lett; 2005 Jan; 579(2):302-12. PubMed ID: 15642336 [TBL] [Abstract][Full Text] [Related]
10. Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. St John FJ; González JM; Pozharski E FEBS Lett; 2010 Nov; 584(21):4435-41. PubMed ID: 20932833 [TBL] [Abstract][Full Text] [Related]
11. The overall architecture and receptor binding of pneumococcal carbohydrate-antigen-hydrolyzing enzymes. Higgins MA; Ficko-Blean E; Meloncelli PJ; Lowary TL; Boraston AB J Mol Biol; 2011 Sep; 411(5):1017-36. PubMed ID: 21767550 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase. Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932 [TBL] [Abstract][Full Text] [Related]
14. Three acidic residues are at the active site of a beta-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Pons T; Naumoff DG; Martínez-Fleites C; Hernández L Proteins; 2004 Feb; 54(3):424-32. PubMed ID: 14747991 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the key active subsites of glycoside hydrolase 13 family members. Kumar V Carbohydr Res; 2010 May; 345(7):893-8. PubMed ID: 20227065 [TBL] [Abstract][Full Text] [Related]
18. Substrate distortion by a lichenase highlights the different conformational itineraries harnessed by related glycoside hydrolases. Money VA; Smith NL; Scaffidi A; Stick RV; Gilbert HJ; Davies GJ Angew Chem Int Ed Engl; 2006 Aug; 45(31):5136-40. PubMed ID: 16823793 [No Abstract] [Full Text] [Related]
19. Analysis of nasturtium TmNXG1 complexes by crystallography and molecular dynamics provides detailed insight into substrate recognition by family GH16 xyloglucan endo-transglycosylases and endo-hydrolases. Mark P; Baumann MJ; Eklöf JM; Gullfot F; Michel G; Kallas AM; Teeri TT; Brumer H; Czjzek M Proteins; 2009 Jun; 75(4):820-36. PubMed ID: 19004021 [TBL] [Abstract][Full Text] [Related]
20. Illuminating the ancient retainer. Kirby AJ Nat Struct Biol; 1996 Feb; 3(2):107-8. PubMed ID: 8564531 [No Abstract] [Full Text] [Related] [Next] [New Search]