These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8536160)

  • 1. Electrical slow wave activity of the cat stomach: its frequency gradient and the effect of indomethacin.
    Xue S; Valdez DT; Tremblay L; Collman PI; Diamant NE
    Neurogastroenterol Motil; 1995 Sep; 7(3):157-67. PubMed ID: 8536160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping.
    Egbuji JU; O'Grady G; Du P; Cheng LK; Lammers WJ; Windsor JA; Pullan AJ
    Neurogastroenterol Motil; 2010 Oct; 22(10):e292-300. PubMed ID: 20618830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of pacemaker activity in the human stomach.
    Rhee PL; Lee JY; Son HJ; Kim JJ; Rhee JC; Kim S; Koh SD; Hwang SJ; Sanders KM; Ward SM
    J Physiol; 2011 Dec; 589(Pt 24):6105-18. PubMed ID: 22005683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributions of interstitial cells of Cajal in stomach and colon of cat, dog, ferret, opossum, rat, guinea pig and rabbit.
    Christensen J; Rick GA; Lowe LS
    J Auton Nerv Syst; 1992 Jan; 37(1):47-56. PubMed ID: 1375611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of gastric electrical and mechanical activity by cholinesterases in mice.
    Worth AA; Forrest AS; Peri LE; Ward SM; Hennig GW; Sanders KM
    J Neurogastroenterol Motil; 2015 Mar; 21(2):200-16. PubMed ID: 25843073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomagnetic signatures of uncoupled gastric musculature.
    Bradshaw LA; Irimia A; Sims JA; Richards WO
    Neurogastroenterol Motil; 2009 Jul; 21(7):778-e50. PubMed ID: 19222760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of electrical pacemaking by interstitial cells of Cajal and gastric dysrhythmias in W/W mutant mice.
    Ordög T; Baldo M; Danko R; Sanders KM
    Gastroenterology; 2002 Dec; 123(6):2028-40. PubMed ID: 12454859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical slow-wave activity from the circular layer of cat terminal antrum.
    Renzetti LM; Wang MB; Ryan JP
    Am J Physiol; 1991 Jul; 261(1 Pt 1):G78-82. PubMed ID: 1858889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed endoscopic mucosal mapping of normal and dysrhythmic gastric slow waves in healthy humans.
    Coleski R; Hasler WL
    Neurogastroenterol Motil; 2004 Oct; 16(5):557-65. PubMed ID: 15500512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and propagation of gastric slow waves.
    van Helden DF; Laver DR; Holdsworth J; Imtiaz MS
    Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):516-24. PubMed ID: 19930430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of stimulated slow waves in cat intestinal muscle.
    Specht PC
    Am J Physiol; 1976 Jul; 231(1):228-34. PubMed ID: 961864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dopamine on electrical activity of isolated stomach muscle in cats.
    Jo YH; Sim SS; Choi H; Kim MS
    Dig Dis Sci; 1989 Apr; 34(4):548-52. PubMed ID: 2702885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of prostaglandin E2 on the electrical activity of cat isolated stomach muscle.
    Kim MS; Lee YL; Jo YH; Sim SS; Choi H
    Prostaglandins; 1985 Jul; 30(1):99-107. PubMed ID: 3863196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of slow wave propagation and entrainment along the stomach.
    Buist ML; Corrias A; Poh YC
    Ann Biomed Eng; 2010 Sep; 38(9):3022-30. PubMed ID: 20437204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural regulation of slow-wave frequency in the murine gastric antrum.
    Forrest AS; Ordög T; Sanders KM
    Am J Physiol Gastrointest Liver Physiol; 2006 Mar; 290(3):G486-95. PubMed ID: 16166340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of gastrointestinal hormones on the electrical and mechanical activity of the cat stomach.
    Ohkawa H; Watanabe M
    Tohoku J Exp Med; 1977 Jul; 122(3):287-98. PubMed ID: 918966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal.
    Kim TW; Koh SD; Ordög T; Ward SM; Sanders KM
    J Physiol; 2003 Jan; 546(Pt 2):415-25. PubMed ID: 12527728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitial cells of cajal generate electrical slow waves in the murine stomach.
    Ordög T; Ward SM; Sanders KM
    J Physiol; 1999 Jul; 518(Pt 1):257-69. PubMed ID: 10373707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.