BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 8538789)

  • 1. Development of identical orientation maps for two eyes without common visual experience.
    Gödecke I; Bonhoeffer T
    Nature; 1996 Jan; 379(6562):251-4. PubMed ID: 8538789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex.
    Kim DS; Bonhoeffer T
    Nature; 1994 Aug; 370(6488):370-2. PubMed ID: 8047142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlated binocular activity guides recovery from monocular deprivation.
    Kind PC; Mitchell DE; Ahmed B; Blakemore C; Bonhoeffer T; Sengpiel F
    Nature; 2002 Mar; 416(6879):430-3. PubMed ID: 11919632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of experience on orientation maps in cat visual cortex.
    Sengpiel F; Stawinski P; Bonhoeffer T
    Nat Neurosci; 1999 Aug; 2(8):727-32. PubMed ID: 10412062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual development: early experience with torsionally disparate images.
    Podell M; Isley MR; Shinkman PG; Rogers DC
    Metab Pediatr Syst Ophthalmol; 1982; 6(3-4):273-83. PubMed ID: 7185019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
    Nakagama H; Tani T; Tanaka S
    Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex.
    White LE; Coppola DM; Fitzpatrick D
    Nature; 2001 Jun; 411(6841):1049-52. PubMed ID: 11429605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of visual experience and intrinsic mechanism in the activity-dependent self-organization of orientation maps: theory and experiment.
    Tanaka S; Miyashita M; Ribot J
    Neural Netw; 2004; 17(8-9):1363-75. PubMed ID: 15555871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encoding of three-dimensional surface slant in cat visual areas 17 and 18.
    Sanada TM; Ohzawa I
    J Neurophysiol; 2006 May; 95(5):2768-86. PubMed ID: 16394073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vision and cortical map development.
    White LE; Fitzpatrick D
    Neuron; 2007 Oct; 56(2):327-38. PubMed ID: 17964249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of visual function by early visual experience.
    Blakemore C
    Bull Schweiz Akad Med Wiss; 1976 Jul; 32(1-3):13-28. PubMed ID: 825172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of visual cortex in interocular alignment.
    Cynader M
    Invest Ophthalmol Vis Sci; 1979 Jul; 18(7):742-51. PubMed ID: 447472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interocular control of neuronal responsiveness in cat visual cortex.
    Sengpiel F; Blakemore C
    Nature; 1994 Apr; 368(6474):847-50. PubMed ID: 8159244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience-driven axon retraction without binocular imbalance in developing visual cortex.
    Haruta M; Hata Y
    Curr Biol; 2007 Jan; 17(1):37-42. PubMed ID: 17208184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eyes wide shut.
    Hübener M; Bonhoeffer T
    Nat Neurosci; 1999 Dec; 2(12):1043-5. PubMed ID: 10570475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preservation of functional architecture in visual cortex of cats with experimentally induced hydrocephalus.
    Imamura K; Tanaka S; Ribot J; Kobayashi M; Yamamoto M; Nakadate K; Watanabe Y
    Eur J Neurosci; 2006 Apr; 23(8):2087-98. PubMed ID: 16630056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals.
    Xu X; Bosking WH; White LE; Fitzpatrick D; Casagrande VA
    J Neurophysiol; 2005 Oct; 94(4):2748-62. PubMed ID: 16000523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial frequency integration for binocular correspondence in macaque area V4.
    Kumano H; Tanabe S; Fujita I
    J Neurophysiol; 2008 Jan; 99(1):402-8. PubMed ID: 17959744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation disparity and plasticity of cortical cells in kittens following surgical rotation of the eye.
    Yinon U
    Metab Pediatr Syst Ophthalmol; 1982; 6(3-4):237-50. PubMed ID: 7185016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prior experience enhances plasticity in adult visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Nat Neurosci; 2006 Jan; 9(1):127-32. PubMed ID: 16327785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.