BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 8538919)

  • 1. Angiotensin-II-induced cell hypertrophy: potential role of impaired proteolytic activity in cultured LLC-PK1 cells.
    Ling H; Vamvakas S; Schaefer L; Schnittler HJ; Schaefer RM; Heidland A
    Nephrol Dial Transplant; 1995; 10(8):1305-12. PubMed ID: 8538919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of captopril, losartan, and nifedipine on cell hypertrophy of cultured vascular smooth muscle from hypertensive Ren-2 transgenic rats.
    Peiró C; Llergo JL; Angulo J; López-Novoa JM; Rodríguez-López A; Rodríguez-Mañas L; Sánchez-Ferrer CF
    Br J Pharmacol; 1997 Aug; 121(7):1438-44. PubMed ID: 9257925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective antagonism of the AT1 receptor inhibits the effect of angiotensin II on DNA and protein synthesis of rat proximal tubular cells.
    Weerackody RP; Chatterjee PK; Mistry SK; McLaren J; Hawksworth GM; McLay JS
    Exp Nephrol; 1997; 5(3):253-62. PubMed ID: 9208286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro.
    Kajstura J; Cigola E; Malhotra A; Li P; Cheng W; Meggs LG; Anversa P
    J Mol Cell Cardiol; 1997 Mar; 29(3):859-70. PubMed ID: 9152847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Juxtaglomerular cell hypertrophy and hyperplasia induced in rhesus monkeys by angiotensin II receptor antagonists.
    Owen RA; Molon-Noblot S; Hubert MF; Siegl PK; Eydelloth RS; Keenan KP
    Lab Invest; 1994 Oct; 71(4):543-51. PubMed ID: 7967510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II stimulates cellular hypertrophy of LLC-PK1 cells through the AT1 receptor.
    Wolf G; Zahner G; Mondorf U; Schoeppe W; Stahl RA
    Nephrol Dial Transplant; 1993; 8(2):128-33. PubMed ID: 7681154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced glycated albumin impairs protein degradation in the kidney proximal tubules cell line LLC-PK1.
    Sebeková K; Schinzel R; Ling H; Simm A; Xiang G; Gekle M; Münch G; Vamvakas S; Heidland A
    Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1051-60. PubMed ID: 9846887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II-1 receptors mediate both vasoconstrictor and hypertrophic responses in rat aortic smooth muscle cells.
    Chiu AT; Roscoe WA; McCall DE; Timmermans PB
    Receptor; 1991; 1(3):133-40. PubMed ID: 1843203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhein inhibits renal tubular epithelial cell hypertrophy and extracellular matrix accumulation induced by transforming growth factor beta1.
    Guo XH; Liu ZH; Dai CS; Li H; Liu D; Li LS
    Acta Pharmacol Sin; 2001 Oct; 22(10):934-8. PubMed ID: 11749778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular hypertrophy in one-kidney, one clip renal hypertensive rats: a role for angiotensin II?
    O'Sullivan JB; Black MJ; Bertram JF; Bobik A
    J Hypertens; 1994 Oct; 12(10):1163-70. PubMed ID: 7836732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the angiotensin II receptor antagonist MK 954 on the angiotensin II-induced increase in free cytosolic Ca2+ and growth in vascular smooth muscle cells.
    Sachinidis A; Görg A; Ko Y; Wieczorek AJ; Düsing R; Vetter H
    J Hypertens Suppl; 1991 Dec; 9(6):S226-7. PubMed ID: 1818954
    [No Abstract]   [Full Text] [Related]  

  • 12. Oxytocin induces a transient increase in cytosolic free [Ca2+] in renal tubular epithelial cells: evidence for oxytocin receptors on LLC-PK1 cells.
    Stassen FL; Heckman G; Schmidt D; Papadopoulos MT; Nambi P; Sarau H; Aiyar N; Gellai M; Kinter L
    Mol Pharmacol; 1988 Feb; 33(2):218-24. PubMed ID: 2828915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca(2+)-growth coupling in angiotensin II-induced hypertrophy in cultured rat cardiac cells.
    Kinugawa K; Takahashi T; Kohmoto O; Yao A; Ikenouchi H; Serizawa T
    Cardiovasc Res; 1995 Sep; 30(3):419-31. PubMed ID: 7585834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II is involved in the progression of renal disease: importance of non-hemodynamic mechanisms.
    Wolf G
    Nephrologie; 1998; 19(7):451-6. PubMed ID: 9857383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of angiotensin II blockade on cardiac hypertrophy and remodelling: a review.
    Dahlöf B
    J Hum Hypertens; 1995 Nov; 9 Suppl 5():S37-44. PubMed ID: 8583480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin II receptor blockade after myocardial infarction in rats: effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content.
    Smits JF; van Krimpen C; Schoemaker RG; Cleutjens JP; Daemen MJ
    J Cardiovasc Pharmacol; 1992; 20(5):772-8. PubMed ID: 1280740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasoactive agents modulate matrix metalloproteinase-2 activity by mesangial cells.
    Singhal PC; Sagar S; Garg P; Bansal V
    Am J Med Sci; 1995 Dec; 310(6):235-41. PubMed ID: 7503103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The diversified pharmacology of angiotensin II-receptor blockade.
    Timmermans PB; Smith RD
    Blood Press Suppl; 1996; 2():53-61. PubMed ID: 8913541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals.
    Hannken T; Schroeder R; Stahl RA; Wolf G
    Kidney Int; 1998 Dec; 54(6):1923-33. PubMed ID: 9853257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiotensin II regulates endothelial cell migration through calcium influx via T-type calcium channel in human umbilical vein endothelial cells.
    Martini A; Bruno R; Mazzulla S; Nocita A; Martino G
    Acta Physiol (Oxf); 2010 Apr; 198(4):449-55. PubMed ID: 20028346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.