These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 8539245)

  • 1. Zinc binding in proteins and solution: a simple but accurate nonbonded representation.
    Stote RH; Karplus M
    Proteins; 1995 Sep; 23(1):12-31. PubMed ID: 8539245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics.
    Koca J; Zhan CG; Rittenhouse RC; Ornstein RL
    J Comput Chem; 2003 Feb; 24(3):368-78. PubMed ID: 12548728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis.
    Elstner M; Cui Q; Munih P; Kaxiras E; Frauenheim T; Karplus M
    J Comput Chem; 2003 Apr; 24(5):565-81. PubMed ID: 12632471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of the metal site of cadmium-substituted carboxypeptidase A in solution and crystalline states and under steady-state peptide hydrolysis.
    Bauer R; Danielsen E; Hemmingsen L; Sorensen MV; Ulstrup J; Friis EP; Auld DS; Bjerrum MJ
    Biochemistry; 1997 Sep; 36(38):11514-24. PubMed ID: 9298972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New perspectives of zinc coordination environments in proteins.
    Maret W
    J Inorg Biochem; 2012 Jun; 111():110-6. PubMed ID: 22196021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.
    Jain T; Jayaram B
    Proteins; 2007 Jun; 67(4):1167-78. PubMed ID: 17380508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the function of the zinc hydroxide-Thr199-Glu106 hydrogen bonding network in carbonic anhydrases.
    Merz KM
    J Mol Biol; 1990 Aug; 214(4):799-802. PubMed ID: 1974931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cys(x)His(y)-Zn2+ interactions: possibilities and limitations of a simple pairwise force field.
    Calimet N; Simonson T
    J Mol Graph Model; 2006 Mar; 24(5):404-11. PubMed ID: 16298534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of cyanide, cyanate, and thiocyanate to human carbonic anhydrase II.
    Peng Z; Merz KM; Banci L
    Proteins; 1993 Oct; 17(2):203-16. PubMed ID: 8265567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of the catalytic mechanisms of the zinc and cadmium containing carbonic anhydrase.
    Marino T; Russo N; Toscano M
    J Am Chem Soc; 2005 Mar; 127(12):4242-53. PubMed ID: 15783206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity.
    Lesburg CA; Huang C; Christianson DW; Fierke CA
    Biochemistry; 1997 Dec; 36(50):15780-91. PubMed ID: 9398308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic analysis of Thr-200-->His human carbonic anhydrase II and its complex with the substrate, HCO3-.
    Xue Y; Vidgren J; Svensson LA; Liljas A; Jonsson BH; Lindskog S
    Proteins; 1993 Jan; 15(1):80-7. PubMed ID: 8451242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective water model for Monte Carlo simulations of proteins.
    Banks J; Brower RC; Ma J
    Biopolymers; 1995 Mar; 35(3):331-41. PubMed ID: 7703376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ins and outs of biological zinc sites.
    Auld DS
    Biometals; 2009 Feb; 22(1):141-8. PubMed ID: 19140015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study.
    da Graça Thrige D; Buur JR; Jørgensen FS
    Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML; Cole JC; Watson P; Gillet V; Willett P
    J Mol Biol; 2001 Mar; 307(3):841-59. PubMed ID: 11273705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction.
    Hu X; Shelver WH
    J Mol Graph Model; 2003 Nov; 22(2):115-26. PubMed ID: 12932782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.