These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 8539788)

  • 1. Microbial transformation of steroids: contribution to 14 alpha-hydroxylations.
    Hu S; Genain G; Azerad R
    Steroids; 1995 Apr; 60(4):337-52. PubMed ID: 8539788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial hydroxylation of acetylaminosteroids.
    Holland HL; Lakshmaiah G; Ruddock PL
    Steroids; 1998 Sep; 63(9):484-95. PubMed ID: 9727096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus.
    Lamm AS; Chen AR; Reynolds WF; Reese PB
    Steroids; 2007 Sep; 72(9-10):713-22. PubMed ID: 17628623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two novel microbial conversion products of progesterone derivatives.
    Krischenowski D; Kieslich K
    Steroids; 1993 Jun; 58(6):278-81. PubMed ID: 8212074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial hydroxylation of 13-ethyl-17 beta-hydroxy-18,19-dinor-17 alpha-pregn-4-en-20-yn-3-one.
    Hu SH; Tian XF; Sun YH; Han GD
    Steroids; 1996 Jul; 61(7):407-10. PubMed ID: 8837292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking Down a New Steroid-Hydroxylating Promiscuous Cytochrome P450: CYP154C8 from Streptomyces sp. W2233-SM.
    Dangi B; Kim KH; Kang SH; Oh TJ
    Chembiochem; 2018 May; 19(10):1066-1077. PubMed ID: 29512903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial transformations of steroids--VI. Transformation of testosterone and androstenedione by Botryosphaerica obtusa.
    Smith KE; Latif S; Kirk DN
    J Steroid Biochem; 1990 Jan; 35(1):115-20. PubMed ID: 2308322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steroid hydroxylations with Botryodiplodia malorum and Colletotrichum lini.
    Romano A; Romano D; Ragg E; Costantino F; Lenna R; Gandolfi R; Molinari F
    Steroids; 2006 Jun; 71(6):429-34. PubMed ID: 16580036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial transformations of steroids--IV. 6,7-Dehydrogenation; a new class of fungal steroid transformation product.
    Smith KE; Latif S; Kirk DN; White KA
    J Steroid Biochem; 1989 Aug; 33(2):271-6. PubMed ID: 2770300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel metabolite structures from biotransformation of a sesquiterpenoid ketone by selected fungal strains.
    Hebda C; Szykula J; Orpiszewski J; Fischer P
    Biol Chem Hoppe Seyler; 1991 May; 372(5):337-44. PubMed ID: 1872996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiologic transformation of progesterone by Curvularia clavata Jain.
    Vujcić M; Jankov RM
    Steroids; 1990 Jan; 55(1):17-21. PubMed ID: 2309253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mucor hiemalis mediated 14α-hydroxylation on steroids: in vivo and in vitro investigations of 14α-hydroxylase activity.
    Kolet SP; Haldar S; Niloferjahan S; Thulasiram HV
    Steroids; 2014 Jul; 85():6-12. PubMed ID: 24747772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of androst-4-ene-3,17-dione by three fungal species
    An X; Gao P; Zhao S; Zhu L; You X; Li C; Zhang Q; Shan L
    Nat Prod Res; 2021 Feb; 35(3):428-435. PubMed ID: 31429310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial transformation of steroids--II. Transformations of progesterone, testosterone and androstenedione by Phycomyces blakesleeanus.
    Smith KE; Latif S; Kirk DN
    J Steroid Biochem; 1989 Mar; 32(3):445-51. PubMed ID: 2704241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient biotransformation of progesterone into 11α-hydroxyprogesterone by Rhizopus microsporus var. oligosporus.
    Nickavar B; Vahidi H; Eslami M
    Z Naturforsch C J Biosci; 2018 Dec; 74(1-2):9-15. PubMed ID: 30367812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of novel Quasi reverse steroidal substrates by Aspergillus tamarii KITA: bypass of lactonisation and an exclusive role for the minor hydroxylation pathway.
    Hunter AC; Kennedy S; Clabby SJ; Elsom J
    Biochim Biophys Acta; 2005 May; 1734(2):190-7. PubMed ID: 15904875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibition of microbial steroid D-ring lactonization by high levels of progesterone.
    Miller TL
    Biochim Biophys Acta; 1972 May; 270(1):167-80. PubMed ID: 5037326
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolism of progesterone and testosterone by a Bacillus sp.
    Mahato SB; Banerjee S; Sahu NP
    Steroids; 1984 May; 43(5):545-58. PubMed ID: 6531787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of steroid 3-sulfates and steroid 17-sulfates by the sodium-dependent organic anion transporter SOAT (SLC10A6).
    Grosser G; Bennien J; Sánchez-Guijo A; Bakhaus K; Döring B; Hartmann M; Wudy SA; Geyer J
    J Steroid Biochem Mol Biol; 2018 May; 179():20-25. PubMed ID: 28951227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation XLV. Transformations of 4-ene-3-oxo steroids in Fusarium culmorum culture.
    Kołek T; Swizdor A
    J Steroid Biochem Mol Biol; 1998 Oct; 67(1):63-9. PubMed ID: 9780031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.