These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 8540030)
1. Automated processing of human vertebral body bone marrow yields preparations with stem cell content similar to that obtained with traditional manual preparation. Kenyon NS; Xu XM; Knapp J; Selvaggi GS; Bottino R; Kong SS; Qian T; Linetsky E; Ricordi C Transplant Proc; 1995 Dec; 27(6):3418. PubMed ID: 8540030 [No Abstract] [Full Text] [Related]
2. Effect of depletion of class II bright cells on the immunogenicity and stem cell content of human vertebral body bone marrow. Kenyon NS; Xu XM; Garcia-Serra A; Ricordi C Transplant Proc; 1995 Dec; 27(6):3419. PubMed ID: 8540031 [No Abstract] [Full Text] [Related]
3. Suitability of neonatal vertebral body marrow for transplant applications. Kong SS; Selvaggi G; Kenyon N; Knapp J; Olson L; Tzakis AG; Miller J; Ricordi C Transplant Proc; 1995 Dec; 27(6):3416. PubMed ID: 8540028 [No Abstract] [Full Text] [Related]
4. A simple method for depletion of bone fragments from human vertebral body marrow. Kong SS; Selvaggi G; Kenyon N; Bottino R; Linetsky E; Ricordi C Transplant Proc; 1995 Dec; 27(6):3417. PubMed ID: 8540029 [No Abstract] [Full Text] [Related]
5. Effect of preservation conditions on human vertebral body marrow. Kong SS; Kenyon NS; Brendel M; Tzakis AG; Miller J; Ricordi C Transplant Proc; 1995 Dec; 27(6):3415. PubMed ID: 8540027 [No Abstract] [Full Text] [Related]
7. Use of CD34+ cell fraction as a measure of hematopoietic stem cells in bone marrow and peripheral blood: comparison with the CFU-GM assay. Janssen WE; Lee C; Farmelo MJ; Smilee R; Barth K; Fields KK; Zorsky PE; Elfenbein GJ Prog Clin Biol Res; 1992; 377():513-21. PubMed ID: 1279719 [No Abstract] [Full Text] [Related]
8. Mononuclear and CD34+ stem cell recovery after automated Ficoll processing of marrow or peripheral blood stem cells for transplantation. Cottler-Fox M; Read EJ; Yu M; Carter C; Klein HG Prog Clin Biol Res; 1992; 377():569-73. PubMed ID: 1279726 [No Abstract] [Full Text] [Related]
9. A manual method for processing bone marrow using percoll: characteristics of the transfusion product. Glasser L; Smith DM; Fiederlein RL; Wood M Prog Clin Biol Res; 1994; 389():685-94. PubMed ID: 7700936 [No Abstract] [Full Text] [Related]
10. A semi-automated process for antibody sensitization and washing of mononuclear cells prior to CD34+ cell selection. Cipolone KM; Carter CS; Yu M; Cottler-Fox M Prog Clin Biol Res; 1994; 389():667-73. PubMed ID: 7535463 [No Abstract] [Full Text] [Related]
11. The efficiency of tumor cell purging using immunomagnetic CD34+ cell separation systems. Roots-Weiss A; Papadimitriou C; Serve H; Hoppe B; Koenigsmann M; Reufi B; Oberberg D; Thiel E; Berdel WE Bone Marrow Transplant; 1997 Jun; 19(12):1239-46. PubMed ID: 9208119 [TBL] [Abstract][Full Text] [Related]
12. Human bone marrow obtained from vertebral bodies: cell isolation, phenotyping, progenitor assay, and transplantation. Fontes P; Rao AS; Ricordi C; Rybka WB; Dodson FS; Broznick B; Lu L; Zeevi A; Thomson AW; Vasko C Transplant Proc; 1994 Dec; 26(6):3406-7. PubMed ID: 7998194 [No Abstract] [Full Text] [Related]
13. Comparison of CD34+ bone marrow cells purified by immunomagnetic and immunoadsorption cell separation techniques. Firat H; Giarratana MC; Kobari L; Poloni A; Bouchet S; Labopin M; Gorin NC; Douay L Bone Marrow Transplant; 1998 May; 21(9):933-8. PubMed ID: 9613787 [TBL] [Abstract][Full Text] [Related]
14. Processing of bone marrow for transplantation: development of a mononuclear cell enrichment protocol. Hollingsworth KL; Williams SF; Blake MS; Pothiawala M; Mick R; Larson RA; Bender JG Prog Clin Biol Res; 1994; 389():695-704. PubMed ID: 7700937 [No Abstract] [Full Text] [Related]
15. Impact of the degree of maturation and differentiation of CD34+ cells in grafts of different origin on the duration of aplasia. Wunder E; Sovalat H; Liang H; Becker M; Henon P Prog Clin Biol Res; 1994; 389():345-50. PubMed ID: 7535441 [No Abstract] [Full Text] [Related]
16. Development of a large-scale immunomagnetic separation system for harvesting CD34-positive cells from bone marrow. Hardwick A; Law P; Mansour V; Kulcinski D; Ishizawa L; Gee A Prog Clin Biol Res; 1992; 377():583-9. PubMed ID: 1279728 [No Abstract] [Full Text] [Related]
17. Human vertebral body bone marrow harvest: comparison between manual and automated methods. Bottino R; Linetsky E; Selvaggi G; Kong SS; Qian T; Ricordi C Transplant Proc; 1995 Dec; 27(6):3340. PubMed ID: 8539981 [No Abstract] [Full Text] [Related]
18. Surgical implantation of bioengineered bone marrow tissue into rats. Naughton BA; San Román J; Sibanda B; Weintraub JP; Morales DL; Kamali V Prog Clin Biol Res; 1994; 389():711-25. PubMed ID: 7700939 [No Abstract] [Full Text] [Related]
19. Counterflow centrifugation allows addition of appropriate numbers of T cells to allogeneic marrow and blood stem cell grafts to prevent severe GVHD without substantial loss of mature and immature progenitor cells. Preijers FW; van Hennik PB; Schattenberg A; Ruijs P; Ploemacher RE; de Witte T Bone Marrow Transplant; 1999 May; 23(10):1061-70. PubMed ID: 10373074 [TBL] [Abstract][Full Text] [Related]
20. Differences in CD34+ cell subpopulations between human bone marrow and "mobilized" peripheral blood as determined with counterflow centrifugal elutriation. Chang Q; Harvey K; Akard L; Thompson J; Dugan MJ; English D; Jansen J Exp Hematol; 1997 May; 25(5):423-31. PubMed ID: 9168064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]