BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 8540305)

  • 1. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates.
    Dunn BM; Scarborough PE; Lowther WT; Rao-Naik C
    Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305
    [No Abstract]   [Full Text] [Related]  

  • 2. Site-directed mutagenesis of rhizopuspepsin: an analysis of unique specificity.
    Lowther WT; Dunn BM
    Adv Exp Med Biol; 1995; 362():555-8. PubMed ID: 8540371
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure-function database for active site binding to the aspartic proteinases.
    Rao C; Scarborough PE; Lowther WT; Kay J; Batley B; Rapundalo S; Klutchko S; Taylor MD; Dunn BM
    Adv Exp Med Biol; 1991; 306():143-7. PubMed ID: 1812702
    [No Abstract]   [Full Text] [Related]  

  • 4. The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases.
    Dunn BM; Hung S
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):231-40. PubMed ID: 10708860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonspecific electrostatic binding of substrates and inhibitors to porcine pepsin.
    Kuzmic P; Sun CQ; Zhao ZC; Rich DH
    Adv Exp Med Biol; 1991; 306():75-86. PubMed ID: 1812761
    [No Abstract]   [Full Text] [Related]  

  • 6. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling.
    Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM
    Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new way of looking at aspartic proteinase structures: a comparison of pepsin structure to other aspartic proteinases in the near active site region.
    Andreeva NS; Bochkarev A; Pechik I
    Adv Exp Med Biol; 1995; 362():19-32. PubMed ID: 8540318
    [No Abstract]   [Full Text] [Related]  

  • 8. Mapping selectivity and specificity of active site of plasmepsins from Plasmodium falciparum using molecular interaction field approach.
    Kumar A; Ghosh I
    Protein Pept Lett; 2007; 14(6):569-74. PubMed ID: 17627598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular aspartic proteinases from Candida yeasts.
    Fusek M; Smith E; Foundling SI
    Adv Exp Med Biol; 1995; 362():489-500. PubMed ID: 8540363
    [No Abstract]   [Full Text] [Related]  

  • 11. Subsite preferences of retroviral proteinases.
    Dunn BM; Gustchina A; Wlodawer A; Kay J
    Methods Enzymol; 1994; 241():254-78. PubMed ID: 7854181
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure of human cathepsin D: comparison of inhibitor binding and subdomain displacement with other aspartic proteases.
    Erickson JW; Baldwin ET; Bhat TN; Gulnik S
    Adv Exp Med Biol; 1995; 362():181-92. PubMed ID: 8540317
    [No Abstract]   [Full Text] [Related]  

  • 13. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin.
    Galea CA; Dalrymple BP; Kuypers R; Blakeley R
    Protein Sci; 2000 Oct; 9(10):1947-59. PubMed ID: 11106168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparisons of the three-dimensional structures, specificities and glycosylation of renins, yeast proteinase A and cathepsin D.
    Aguilar CF; Dhanaraj V; Guruprasad K; Dealwis C; Badasso M; Cooper JB; Wood SP; Blundell TL
    Adv Exp Med Biol; 1995; 362():155-66. PubMed ID: 8540315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat.
    Balbaa M; Cunningham A; Hofmann T
    Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity study of recombinant Rhizopus chinensis aspartic proteinase.
    Lowther WT; Chen Z; Lin XL; Tang J; Dunn BM
    Adv Exp Med Biol; 1991; 306():275-9. PubMed ID: 1812717
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of the specificity of the aspartic proteinases towards internally consistent sets of oligopeptide substrates.
    Dunn BM; Oda K; Kay J; Rao-Naik C; Lowther WT; Beyer BM; Scarborough PE; Bukhtiyarova M
    Adv Exp Med Biol; 1998; 436():133-8. PubMed ID: 9561210
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of kinetic properties of native and recombinant human cathepsin D.
    Scarborough PE; Richo GR; Kay J; Conner GE; Dunn BM
    Adv Exp Med Biol; 1991; 306():343-7. PubMed ID: 1812725
    [No Abstract]   [Full Text] [Related]  

  • 19. Structure and possible function of aspartic proteinases in barley and other plants.
    Kervinen J; Törmäkangas K; Runeberg-Roos P; Guruprasad K; Blundell T; Teeri TH
    Adv Exp Med Biol; 1995; 362():241-54. PubMed ID: 8540324
    [No Abstract]   [Full Text] [Related]  

  • 20. Overview of pepsin-like aspartic peptidases.
    Dunn BM
    Curr Protoc Protein Sci; 2001 Nov; Chapter 21():Unit 21.3. PubMed ID: 18429164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.