These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 8540305)

  • 1. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates.
    Dunn BM; Scarborough PE; Lowther WT; Rao-Naik C
    Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305
    [No Abstract]   [Full Text] [Related]  

  • 2. Site-directed mutagenesis of rhizopuspepsin: an analysis of unique specificity.
    Lowther WT; Dunn BM
    Adv Exp Med Biol; 1995; 362():555-8. PubMed ID: 8540371
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure-function database for active site binding to the aspartic proteinases.
    Rao C; Scarborough PE; Lowther WT; Kay J; Batley B; Rapundalo S; Klutchko S; Taylor MD; Dunn BM
    Adv Exp Med Biol; 1991; 306():143-7. PubMed ID: 1812702
    [No Abstract]   [Full Text] [Related]  

  • 4. The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases.
    Dunn BM; Hung S
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):231-40. PubMed ID: 10708860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonspecific electrostatic binding of substrates and inhibitors to porcine pepsin.
    Kuzmic P; Sun CQ; Zhao ZC; Rich DH
    Adv Exp Med Biol; 1991; 306():75-86. PubMed ID: 1812761
    [No Abstract]   [Full Text] [Related]  

  • 6. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling.
    Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM
    Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new way of looking at aspartic proteinase structures: a comparison of pepsin structure to other aspartic proteinases in the near active site region.
    Andreeva NS; Bochkarev A; Pechik I
    Adv Exp Med Biol; 1995; 362():19-32. PubMed ID: 8540318
    [No Abstract]   [Full Text] [Related]  

  • 8. Mapping selectivity and specificity of active site of plasmepsins from Plasmodium falciparum using molecular interaction field approach.
    Kumar A; Ghosh I
    Protein Pept Lett; 2007; 14(6):569-74. PubMed ID: 17627598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular aspartic proteinases from Candida yeasts.
    Fusek M; Smith E; Foundling SI
    Adv Exp Med Biol; 1995; 362():489-500. PubMed ID: 8540363
    [No Abstract]   [Full Text] [Related]  

  • 11. Subsite preferences of retroviral proteinases.
    Dunn BM; Gustchina A; Wlodawer A; Kay J
    Methods Enzymol; 1994; 241():254-78. PubMed ID: 7854181
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure of human cathepsin D: comparison of inhibitor binding and subdomain displacement with other aspartic proteases.
    Erickson JW; Baldwin ET; Bhat TN; Gulnik S
    Adv Exp Med Biol; 1995; 362():181-92. PubMed ID: 8540317
    [No Abstract]   [Full Text] [Related]  

  • 13. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin.
    Galea CA; Dalrymple BP; Kuypers R; Blakeley R
    Protein Sci; 2000 Oct; 9(10):1947-59. PubMed ID: 11106168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparisons of the three-dimensional structures, specificities and glycosylation of renins, yeast proteinase A and cathepsin D.
    Aguilar CF; Dhanaraj V; Guruprasad K; Dealwis C; Badasso M; Cooper JB; Wood SP; Blundell TL
    Adv Exp Med Biol; 1995; 362():155-66. PubMed ID: 8540315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat.
    Balbaa M; Cunningham A; Hofmann T
    Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity study of recombinant Rhizopus chinensis aspartic proteinase.
    Lowther WT; Chen Z; Lin XL; Tang J; Dunn BM
    Adv Exp Med Biol; 1991; 306():275-9. PubMed ID: 1812717
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of the specificity of the aspartic proteinases towards internally consistent sets of oligopeptide substrates.
    Dunn BM; Oda K; Kay J; Rao-Naik C; Lowther WT; Beyer BM; Scarborough PE; Bukhtiyarova M
    Adv Exp Med Biol; 1998; 436():133-8. PubMed ID: 9561210
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of kinetic properties of native and recombinant human cathepsin D.
    Scarborough PE; Richo GR; Kay J; Conner GE; Dunn BM
    Adv Exp Med Biol; 1991; 306():343-7. PubMed ID: 1812725
    [No Abstract]   [Full Text] [Related]  

  • 19. Structure and possible function of aspartic proteinases in barley and other plants.
    Kervinen J; Törmäkangas K; Runeberg-Roos P; Guruprasad K; Blundell T; Teeri TH
    Adv Exp Med Biol; 1995; 362():241-54. PubMed ID: 8540324
    [No Abstract]   [Full Text] [Related]  

  • 20. Overview of pepsin-like aspartic peptidases.
    Dunn BM
    Curr Protoc Protein Sci; 2001 Nov; Chapter 21():Unit 21.3. PubMed ID: 18429164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.