These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8540317)

  • 1. Structure of human cathepsin D: comparison of inhibitor binding and subdomain displacement with other aspartic proteases.
    Erickson JW; Baldwin ET; Bhat TN; Gulnik S
    Adv Exp Med Biol; 1995; 362():181-92. PubMed ID: 8540317
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural analysis of plasmepsin II. A comparison with human aspartic proteases.
    Silva AM; Lee AY; Erickson JW; Goldberg DE
    Adv Exp Med Biol; 1998; 436():363-73. PubMed ID: 9561243
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates.
    Dunn BM; Scarborough PE; Lowther WT; Rao-Naik C
    Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparisons of the three-dimensional structures, specificities and glycosylation of renins, yeast proteinase A and cathepsin D.
    Aguilar CF; Dhanaraj V; Guruprasad K; Dealwis C; Badasso M; Cooper JB; Wood SP; Blundell TL
    Adv Exp Med Biol; 1995; 362():155-66. PubMed ID: 8540315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoglobin-degrading, aspartic proteases of blood-feeding parasites: substrate specificity revealed by homology models.
    Brinkworth RI; Prociv P; Loukas A; Brindley PJ
    J Biol Chem; 2001 Oct; 276(42):38844-51. PubMed ID: 11495896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cathepsin D crystal structures and lysosomal sorting.
    Metcalf P; Fusek M
    Adv Exp Med Biol; 1995; 362():193-200. PubMed ID: 8540319
    [No Abstract]   [Full Text] [Related]  

  • 7. Aspartic proteinase inhibitors from tomato and potato are more potent against yeast proteinase A than cathepsin D.
    Cater SA; Lees WE; Hill J; Brzin J; Kay J; Phylip LH
    Biochim Biophys Acta; 2002 Apr; 1596(1):76-82. PubMed ID: 11983423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues.
    Xie D; Gulnik S; Collins L; Gustchina E; Suvorov L; Erickson JW
    Biochemistry; 1997 Dec; 36(51):16166-72. PubMed ID: 9405050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum.
    Silva AM; Lee AY; Gulnik SV; Maier P; Collins J; Bhat TN; Collins PJ; Cachau RE; Luker KE; Gluzman IY; Francis SE; Oksman A; Goldberg DE; Erickson JW
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10034-9. PubMed ID: 8816746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspartic proteinase from barley seeds is related to animal cathepsin D.
    Törmäkangas K; Runeberg-Roos P; Ostman A; Tilgmann C; Sarkkinen P; Kervinen J; Mikola L; Kalkkinen N
    Adv Exp Med Biol; 1991; 306():355-9. PubMed ID: 1812727
    [No Abstract]   [Full Text] [Related]  

  • 11. Design and synthesis of potent and selective BACE-1 inhibitors.
    Björklund C; Oscarson S; Benkestock K; Borkakoti N; Jansson K; Lindberg J; Vrang L; Hallberg A; Rosenquist A; Samuelsson B
    J Med Chem; 2010 Feb; 53(4):1458-64. PubMed ID: 20128595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrocyclic inhibitors of the malarial aspartic proteases plasmepsin I, II, and IV.
    Ersmark K; Nervall M; Gutiérrez-de-Terán H; Hamelink E; Janka LK; Clemente JC; Dunn BM; Gogoll A; Samuelsson B; Qvist J; Hallberg A
    Bioorg Med Chem; 2006 Apr; 14(7):2197-208. PubMed ID: 16307884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human procathepsin D: three-dimensional model and isolation.
    Koelsch G; Metcalf P; Vetvicka V; Fusek M
    Adv Exp Med Biol; 1995; 362():273-8. PubMed ID: 8540327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design.
    Baldwin ET; Bhat TN; Gulnik S; Hosur MV; Sowder RC; Cachau RE; Collins J; Silva AM; Erickson JW
    Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6796-800. PubMed ID: 8393577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspartic proteinases from the human malaria parasite Plasmodium falciparum.
    Berry C; Dame JB; Dunn BM; Kay J
    Adv Exp Med Biol; 1995; 362():511-8. PubMed ID: 8540365
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparison of kinetic properties of native and recombinant human cathepsin D.
    Scarborough PE; Richo GR; Kay J; Conner GE; Dunn BM
    Adv Exp Med Biol; 1991; 306():343-7. PubMed ID: 1812725
    [No Abstract]   [Full Text] [Related]  

  • 17. Crystal structures of rhizopuspepsin/inhibitor complexes.
    Parris KD; Hoover DJ; Davies DR
    Adv Exp Med Biol; 1991; 306():217-31. PubMed ID: 1812709
    [No Abstract]   [Full Text] [Related]  

  • 18. Flap position of free memapsin 2 (beta-secretase), a model for flap opening in aspartic protease catalysis.
    Hong L; Tang J
    Biochemistry; 2004 Apr; 43(16):4689-95. PubMed ID: 15096037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular aspartic proteinases from Candida yeasts.
    Fusek M; Smith E; Foundling SI
    Adv Exp Med Biol; 1995; 362():489-500. PubMed ID: 8540363
    [No Abstract]   [Full Text] [Related]  

  • 20. Analyses of ligand binding in five endothiapepsin crystal complexes and their use in the design and evaluation of novel renin inhibitors.
    Lunney EA; Hamilton HW; Hodges JC; Kaltenbronn JS; Repine JT; Badasso M; Cooper JB; Dealwis C; Wallace BA; Lowther WT
    J Med Chem; 1993 Nov; 36(24):3809-20. PubMed ID: 8254610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.