These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 8540318)
1. A new way of looking at aspartic proteinase structures: a comparison of pepsin structure to other aspartic proteinases in the near active site region. Andreeva NS; Bochkarev A; Pechik I Adv Exp Med Biol; 1995; 362():19-32. PubMed ID: 8540318 [No Abstract] [Full Text] [Related]
2. Relationships of human immunodeficiency virus protease with eukaryotic aspartic proteases. Lin XL; Lin YZ; Tang J Methods Enzymol; 1994; 241():195-224. PubMed ID: 7854179 [No Abstract] [Full Text] [Related]
3. Crystal structure of a tethered dimer of HIV-1 proteinase complexed with an inhibitor. Bhat TN; Baldwin ET; Liu B; Cheng YS; Erickson JW Nat Struct Biol; 1994 Aug; 1(8):552-6. PubMed ID: 7664084 [TBL] [Abstract][Full Text] [Related]
4. X-ray structures of retroviral proteases and their inhibitor-bound complexes. Ringe D Methods Enzymol; 1994; 241():157-77. PubMed ID: 7854176 [No Abstract] [Full Text] [Related]
5. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates. Dunn BM; Scarborough PE; Lowther WT; Rao-Naik C Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305 [No Abstract] [Full Text] [Related]
6. X-ray structural studies of mammalian aspartic proteinases. Cooper JB; Newman MP Adv Exp Med Biol; 1991; 306():47-61. PubMed ID: 1812745 [No Abstract] [Full Text] [Related]
7. Comparisons of the sequences, 3-D structures and mechanisms of pepsin-like and retroviral aspartic proteinases. Blundell TL; Cooper JB; Sali A; Zhu ZY Adv Exp Med Biol; 1991; 306():443-53. PubMed ID: 1812741 [No Abstract] [Full Text] [Related]
8. Identification of amino acid residues of the retroviral aspartic proteinases important for substrate specificity and catalytic efficiency. Cameron CE; Burstein H; Bizub-Bender D; Ridky T; Weber IT; Wlodawer A; Skalka AM; Leis J Adv Exp Med Biol; 1995; 362():399-406. PubMed ID: 8540349 [No Abstract] [Full Text] [Related]
9. Qualitative study of drug resistance in retroviral protease using structural modeling and site-directed mutagenesis. Culberson JC; Bush BL; Sardana VV Methods Enzymol; 1994; 241():385-94. PubMed ID: 7854190 [No Abstract] [Full Text] [Related]
10. Molecular modeling of the structure of FIV protease. Gustchina A Adv Exp Med Biol; 1995; 362():479-84. PubMed ID: 8540361 [No Abstract] [Full Text] [Related]
11. Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Andreeva NS; Rumsh LD Protein Sci; 2001 Dec; 10(12):2439-50. PubMed ID: 11714911 [TBL] [Abstract][Full Text] [Related]
12. Extending crystallographic information with semiempirical quantum mechanics and molecular mechanics: a case of aspartic proteinases. Goldblum A; Rayan A; Fliess A; Glick M J Chem Inf Comput Sci; 1993; 33(2):270-4. PubMed ID: 8391019 [TBL] [Abstract][Full Text] [Related]
13. An analysis of subdomain orientation, conformational change and disorder in relation to crystal packing of aspartic proteinases. Bailey D; Carpenter EP; Coker A; Coker S; Read J; Jones AT; Erskine P; Aguilar CF; Badasso M; Toldo L; Rippmann F; Sanz-Aparicio J; Albert A; Blundell TL; Roberts NB; Wood SP; Cooper JB Acta Crystallogr D Biol Crystallogr; 2012 May; 68(Pt 5):541-52. PubMed ID: 22525752 [TBL] [Abstract][Full Text] [Related]
14. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain. Abad-Zapatero C; Rydel TJ; Erickson J Proteins; 1990; 8(1):62-81. PubMed ID: 2217165 [TBL] [Abstract][Full Text] [Related]
15. Conformation analysis of non-pepsin-type acid proteinase A from the fungus Aspergillus niger by NMR. Kojima M; Tanokura M; Muto Y; Miyano H; Suzuki E; Hamaya T; Takizawa T; Kono T; Takahashi K Adv Exp Med Biol; 1995; 362():611-5. PubMed ID: 8540381 [No Abstract] [Full Text] [Related]
16. Comparative analysis of the X-ray structures of HIV-1 and HIV-2 proteases in complex with CGP 53820, a novel pseudosymmetric inhibitor. Priestle JP; Fässler A; Rösel J; Tintelnot-Blomley M; Strop P; Grütter MG Structure; 1995 Apr; 3(4):381-9. PubMed ID: 7613867 [TBL] [Abstract][Full Text] [Related]
17. High-resolution structure of the extracellular aspartic proteinase from Candida tropicalis yeast. Symersky J; Monod M; Foundling SI Biochemistry; 1997 Oct; 36(42):12700-10. PubMed ID: 9335526 [TBL] [Abstract][Full Text] [Related]
18. Why does pepsin have a negative charge at very low pH? An analysis of conserved charged residues in aspartic proteinases. Andreeva NS; James MN Adv Exp Med Biol; 1991; 306():39-45. PubMed ID: 1812734 [No Abstract] [Full Text] [Related]
19. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease. Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985 [TBL] [Abstract][Full Text] [Related]
20. X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus. Newman M; Watson F; Roychowdhury P; Jones H; Badasso M; Cleasby A; Wood SP; Tickle IJ; Blundell TL J Mol Biol; 1993 Mar; 230(1):260-83. PubMed ID: 8450540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]