BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8540348)

  • 21. Expression, characterisation and mutagenesis of the aspartic proteinase from equine infectious anaemia virus.
    Powell DJ; Bur D; Wlodawer A; Gustchina A; Payne SL; Dunn BM; Kay J
    Eur J Biochem; 1996 Oct; 241(2):664-74. PubMed ID: 8917470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fibronectin is a non-viral substrate for the HIV proteinase.
    Oswald M; von der Helm K
    FEBS Lett; 1991 Nov; 292(1-2):298-300. PubMed ID: 1959621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics and mechanism of autoprocessing of human immunodeficiency virus type 1 protease from an analog of the Gag-Pol polyprotein.
    Louis JM; Nashed NT; Parris KD; Kimmel AR; Jerina DM
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):7970-4. PubMed ID: 8058744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of point mutations on the kinetics and the inhibition of human immunodeficiency virus type 1 protease: relationship to drug resistance.
    Lin Y; Lin X; Hong L; Foundling S; Heinrikson RL; Thaisrivongs S; Leelamanit W; Raterman D; Shah M; Dunn BM
    Biochemistry; 1995 Jan; 34(4):1143-52. PubMed ID: 7827064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization of HIV proteinase dimer by bound substrate.
    Kuzmic P; García-Echeverría C; Rich DH
    Biochem Biophys Res Commun; 1993 Jul; 194(1):301-5. PubMed ID: 8333844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amplification of the effects of drug resistance mutations by background polymorphisms in HIV-1 protease from African subtypes.
    Velazquez-Campoy A; Vega S; Freire E
    Biochemistry; 2002 Jul; 41(27):8613-9. PubMed ID: 12093278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of thermal stability of subtilisin J by changing the primary autolysis site.
    Bae KH; Jang JS; Park KS; Lee SH; Byun SM
    Biochem Biophys Res Commun; 1995 Feb; 207(1):20-4. PubMed ID: 7857265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and kinetic analysis of drug resistant mutants of HIV-1 protease.
    Mahalingam B; Louis JM; Reed CC; Adomat JM; Krouse J; Wang YF; Harrison RW; Weber IT
    Eur J Biochem; 1999 Jul; 263(1):238-45. PubMed ID: 10429209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies.
    Maseko SB; Natarajan S; Sharma V; Bhattacharyya N; Govender T; Sayed Y; Maguire GE; Lin J; Kruger HG
    Protein Expr Purif; 2016 Jun; 122():90-6. PubMed ID: 26917227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures.
    Tong L; Pav S; Pargellis C; Dô F; Lamarre D; Anderson PC
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8387-91. PubMed ID: 8378311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of human immunodeficiency virus type 1 protease increases intracellular cleavage of Gag and reduces virus infectivity.
    Luukkonen BG; Fenyö EM; Schwartz S
    Virology; 1995 Feb; 206(2):854-65. PubMed ID: 7856098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering human immunodeficiency virus 1 protease heterodimers as macromolecular inhibitors of viral maturation.
    McPhee F; Good AC; Kuntz ID; Craik CS
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11477-81. PubMed ID: 8876160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alteration of substrate and inhibitor specificity of feline immunodeficiency virus protease.
    Lin YC; Beck Z; Lee T; Le VD; Morris GM; Olson AJ; Wong CH; Elder JH
    J Virol; 2000 May; 74(10):4710-20. PubMed ID: 10775609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic contribution of flap-substrate hydrogen bonds in "HIV-1 protease" explored by chemical synthesis.
    Baca M; Kent SB
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11638-42. PubMed ID: 8265601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site.
    Mahalingam B; Wang YF; Boross PI; Tozser J; Louis JM; Harrison RW; Weber IT
    Eur J Biochem; 2004 Apr; 271(8):1516-24. PubMed ID: 15066177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic characterization and cross-resistance patterns of HIV-1 protease mutants selected under drug pressure.
    Gulnik SV; Suvorov LI; Liu B; Yu B; Anderson B; Mitsuya H; Erickson JW
    Biochemistry; 1995 Jul; 34(29):9282-7. PubMed ID: 7626598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural engineering of the HIV-1 protease molecule with a beta-turn mimic of fixed geometry.
    Baca M; Alewood PF; Kent SB
    Protein Sci; 1993 Jul; 2(7):1085-91. PubMed ID: 8358291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance.
    Hong L; Zhang XC; Hartsuck JA; Tang J
    Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.