BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8540348)

  • 41. Analysis of autodegradation sites of thermolysin and enhancement of its thermostability by modifying Leu155 at an autodegradation site.
    Matsumiya Y; Nishikawa K; Aoshima H; Inouye K; Kubo M
    J Biochem; 2004 Apr; 135(4):547-53. PubMed ID: 15115781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluctuating partially native-like topologies in the acid denatured ensemble of autolysis resistant HIV-1 protease.
    Rout MK; Hosur RV
    Arch Biochem Biophys; 2009 Feb; 482(1-2):33-41. PubMed ID: 19100236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trans-dominant inhibitory human immunodeficiency virus type 1 protease monomers prevent protease activation and virion maturation.
    Babé LM; Rosé J; Craik CS
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10069-73. PubMed ID: 7479728
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigating the stereochemistry of binding to HIV-1 protease with inhibitors containing isomers of 4-amino-3-hydroxy-5-phenylpentanoic acid.
    Raju B; Deshpande MS
    Biochem Biophys Res Commun; 1991 Oct; 180(1):187-90. PubMed ID: 1930215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HIV-1 RT enhances the activity of a tethered dimer of HIV-1 proteinase.
    Goobar-Larsson L; Larsson PT; Debouck C; Towler EM
    Biochem Biophys Res Commun; 1996 Mar; 220(1):203-7. PubMed ID: 8602845
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A side chain at position 48 of the human immunodeficiency virus type-1 protease flap provides an additional specificity determinant.
    Moody MD; Pettit SC; Shao W; Everitt L; Loeb DD; Hutchison CA; Swanstrom R
    Virology; 1995 Mar; 207(2):475-85. PubMed ID: 7886951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cloning, expression and purification of a recombinant poly-histidine-linked HIV-1 protease.
    Leuthardt A; Roesel JL
    FEBS Lett; 1993 Jul; 326(1-3):275-80. PubMed ID: 8325379
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Triterpenes as potential dimerization inhibitors of HIV-1 protease.
    Quéré L; Wenger T; Schramm HJ
    Biochem Biophys Res Commun; 1996 Oct; 227(2):484-8. PubMed ID: 8967903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stability and activity of human immunodeficiency virus protease: comparison of the natural dimer with a homologous, single-chain tethered dimer.
    Cheng YS; Yin FH; Foundling S; Blomstrom D; Kettner CA
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9660-4. PubMed ID: 2263618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comprehensive mutagenesis of HIV-1 protease: a computational geometry approach.
    Masso M; Vaisman II
    Biochem Biophys Res Commun; 2003 May; 305(2):322-6. PubMed ID: 12745077
    [TBL] [Abstract][Full Text] [Related]  

  • 51. HIV-1 protease: structure, dynamics, and inhibition.
    Louis JM; Ishima R; Torchia DA; Weber IT
    Adv Pharmacol; 2007; 55():261-98. PubMed ID: 17586318
    [No Abstract]   [Full Text] [Related]  

  • 52. Comparison of the substrate specificity of the human T-cell leukemia virus and human immunodeficiency virus proteinases.
    Tözsér J; Zahuczky G; Bagossi P; Louis JM; Copeland TD; Oroszlan S; Harrison RW; Weber IT
    Eur J Biochem; 2000 Oct; 267(20):6287-95. PubMed ID: 11012683
    [TBL] [Abstract][Full Text] [Related]  

  • 53. X-ray structure of a tethered dimer for HIV-1 protease.
    Bhat TN; Baldwin ET; Liu B; Cheng YS; Erickson JW
    Adv Exp Med Biol; 1995; 362():439-44. PubMed ID: 8540354
    [No Abstract]   [Full Text] [Related]  

  • 54. Interaction of mutant forms of the HIV-1 protease with substrate and inhibitors.
    Darke PL; Kohl NE; Hanobik MG; Leu CT; Vacca JP; Guare JP; Heimbach JC; Dixon RA
    Adv Exp Med Biol; 1991; 306():483-7. PubMed ID: 1812746
    [No Abstract]   [Full Text] [Related]  

  • 55. Structural basis for distinctions between substrate and inhibitor specificities for feline immunodeficiency virus and human immunodeficiency virus proteases.
    Lin YC; Beck Z; Morris GM; Olson AJ; Elder JH
    J Virol; 2003 Jun; 77(12):6589-600. PubMed ID: 12767979
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational mutagenesis studies of protein structure-function correlations.
    Masso M; Lu Z; Vaisman II
    Proteins; 2006 Jul; 64(1):234-45. PubMed ID: 16617425
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthetic, structural mimetics of the β-hairpin flap of HIV-1 protease inhibit enzyme function.
    Chauhan J; Chen SE; Fenstermacher KJ; Naser-Tavakolian A; Reingewertz T; Salmo R; Lee C; Williams E; Raje M; Sundberg E; DeStefano JJ; Freire E; Fletcher S
    Bioorg Med Chem; 2015 Nov; 23(21):7095-109. PubMed ID: 26474665
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical effects on the kinetics of the HIV proteinase deactivation.
    Kuzmic P; Peranteau AG; García-Echeverría G; Rich DH
    Biochem Biophys Res Commun; 1996 Apr; 221(2):313-7. PubMed ID: 8619852
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: rethinking the "fireman's grip" hypothesis.
    Strisovsky K; Tessmer U; Langner J; Konvalinka J; Kräusslich HG
    Protein Sci; 2000 Sep; 9(9):1631-41. PubMed ID: 11045610
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determining the 3D structure of HIV-1 protease.
    Kent S; Marshall GR; Wlodawer A
    Science; 2000 Jun; 288(5471):1590. PubMed ID: 10858137
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.