BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8540356)

  • 1. Molecular dynamics of HIV-1 protease in complex with a difluoroketone-containing inhibitor: implications for the catalytic mechanism.
    Silva AM; Cachau RE; Baldwin ET; Gulnik S; Sham HL; Erickson JW
    Adv Exp Med Biol; 1995; 362():451-4. PubMed ID: 8540356
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition and catalytic mechanism of HIV-1 aspartic protease.
    Silva AM; Cachau RE; Sham HL; Erickson JW
    J Mol Biol; 1996 Jan; 255(2):321-46. PubMed ID: 8551523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of symmetry-based, peptidomimetic inhibitors of human immunodeficiency virus protease.
    Kempf DJ
    Methods Enzymol; 1994; 241():334-54. PubMed ID: 7854187
    [No Abstract]   [Full Text] [Related]  

  • 4. Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor.
    Bäckbro K; Löwgren S; Osterlund K; Atepo J; Unge T; Hultén J; Bonham NM; Schaal W; Karlén A; Hallberg A
    J Med Chem; 1997 Mar; 40(6):898-902. PubMed ID: 9083478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron crystallography used to identify targets to improve HIV-1 protease inhibitor.
    Hill R
    Future Med Chem; 2013 Oct; 5(15):1705. PubMed ID: 24144407
    [No Abstract]   [Full Text] [Related]  

  • 6. X-ray structure of HIV-1 protease tethered dimer complexed to ritonavir.
    Das A; Rao DR; Hosur MV
    Protein Pept Lett; 2007; 14(6):565-8. PubMed ID: 17627597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimates of relative binding free energies for HIV protease inhibitors using different levels of approximations.
    Lee CY; Yang PK; Tzou WS; Hwang MJ
    Protein Eng; 1998 Jun; 11(6):429-37. PubMed ID: 9725621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A priori molecular descriptors in QSAR: a case of HIV-1 protease inhibitors. II. Molecular graphics and modeling.
    Kiralj R; Ferreira MM
    J Mol Graph Model; 2003 Jun; 21(6):499-515. PubMed ID: 12676237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QXP: powerful, rapid computer algorithms for structure-based drug design.
    McMartin C; Bohacek RS
    J Comput Aided Mol Des; 1997 Jul; 11(4):333-44. PubMed ID: 9334900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a tethered dimer of HIV-1 proteinase complexed with an inhibitor.
    Bhat TN; Baldwin ET; Liu B; Cheng YS; Erickson JW
    Nat Struct Biol; 1994 Aug; 1(8):552-6. PubMed ID: 7664084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in automated docking applied to human immunodeficiency virus type 1 protease.
    Miller MD; Sheridan RP; Kearsley SK; Underwood DJ
    Methods Enzymol; 1994; 241():354-70. PubMed ID: 7854188
    [No Abstract]   [Full Text] [Related]  

  • 13. Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir.
    Chen X; Weber IT; Harrison RW
    J Mol Model; 2004 Dec; 10(5-6):373-81. PubMed ID: 15597206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How flexible is tipranavir in complex with the HIV-1 protease active site?
    Schake D
    AIDS; 2004 Feb; 18(3):579-80. PubMed ID: 15090819
    [No Abstract]   [Full Text] [Related]  

  • 15. Novel insight into inhibitor binding of highly symmetric HIV-1 protease.
    Wollmann J; Baumert C; Erlenkamp G; Sippl W; Hilgeroth A
    Chembiochem; 2008 Apr; 9(6):874-8. PubMed ID: 18318035
    [No Abstract]   [Full Text] [Related]  

  • 16. Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations.
    Jenwitheesuk E; Samudrala R
    BMC Struct Biol; 2003 Apr; 3():2. PubMed ID: 12675950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel nonpeptide HIV-1 protease inhibitor: elucidation of the binding mode and its application in the design of related analogs.
    Lunney EA; Hagen SE; Domagala JM; Humblet C; Kosinski J; Tait BD; Warmus JS; Wilson M; Ferguson D; Hupe D
    J Med Chem; 1994 Aug; 37(17):2664-77. PubMed ID: 8064795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis, and resistance patterns of MP-134 and MP-167, two novel inhibitors of HIV type 1 protease.
    Mo H; Markowitz M; Majer P; Burt SK; Gulnik SV; Suvorov LI; Erickson JW; Ho DD
    AIDS Res Hum Retroviruses; 1996 Jan; 12(1):55-61. PubMed ID: 8825619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvation effects are responsible for the reduced inhibitor affinity of some HIV-1 PR mutants.
    Sussman F; Villaverde MC; Davis A
    Protein Sci; 1997 May; 6(5):1024-30. PubMed ID: 9144773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity.
    Velazquez-Campoy A; Todd MJ; Freire E
    Biochemistry; 2000 Mar; 39(9):2201-7. PubMed ID: 10694385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.