These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 8540361)
1. Molecular modeling of the structure of FIV protease. Gustchina A Adv Exp Med Biol; 1995; 362():479-84. PubMed ID: 8540361 [No Abstract] [Full Text] [Related]
2. Identification of amino acid residues of the retroviral aspartic proteinases important for substrate specificity and catalytic efficiency. Cameron CE; Burstein H; Bizub-Bender D; Ridky T; Weber IT; Wlodawer A; Skalka AM; Leis J Adv Exp Med Biol; 1995; 362():399-406. PubMed ID: 8540349 [No Abstract] [Full Text] [Related]
3. Structural studies of FIV and HIV-1 proteases complexed with an efficient inhibitor of FIV protease. Li M; Morris GM; Lee T; Laco GS; Wong CH; Olson AJ; Elder JH; Wlodawer A; Gustchina A Proteins; 2000 Jan; 38(1):29-40. PubMed ID: 10651036 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of an FIV/HIV chimeric protease complexed with the broad-based inhibitor, TL-3. Heaslet H; Lin YC; Tam K; Torbett BE; Elder JH; Stout CD Retrovirology; 2007 Jan; 4():1. PubMed ID: 17212810 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for distinctions between substrate and inhibitor specificities for feline immunodeficiency virus and human immunodeficiency virus proteases. Lin YC; Beck Z; Morris GM; Olson AJ; Elder JH J Virol; 2003 Jun; 77(12):6589-600. PubMed ID: 12767979 [TBL] [Abstract][Full Text] [Related]
6. Breaking the shackles of the genetic code: engineering retroviral proteases through total chemical synthesis. Kent SB; Baca M; Elder J; Miller M; Milton R; Milton S; Rao JK; Schnölzer M Adv Exp Med Biol; 1995; 362():425-38. PubMed ID: 8540353 [No Abstract] [Full Text] [Related]
7. Structure of an inhibitor complex of the proteinase from feline immunodeficiency virus. Wlodawer A; Gustchina A; Reshetnikova L; Lubkowski J; Zdanov A; Hui KY; Angleton EL; Farmerie WG; Goodenow MM; Bhatt D Nat Struct Biol; 1995 Jun; 2(6):480-8. PubMed ID: 7664111 [TBL] [Abstract][Full Text] [Related]
8. Alteration of substrate and inhibitor specificity of feline immunodeficiency virus protease. Lin YC; Beck Z; Lee T; Le VD; Morris GM; Olson AJ; Wong CH; Elder JH J Virol; 2000 May; 74(10):4710-20. PubMed ID: 10775609 [TBL] [Abstract][Full Text] [Related]
9. Relationships of human immunodeficiency virus protease with eukaryotic aspartic proteases. Lin XL; Lin YZ; Tang J Methods Enzymol; 1994; 241():195-224. PubMed ID: 7854179 [No Abstract] [Full Text] [Related]
10. Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease. Lin YC; Perryman AL; Olson AJ; Torbett BE; Elder JH; Stout CD Acta Crystallogr D Biol Crystallogr; 2011 Jun; 67(Pt 6):540-8. PubMed ID: 21636894 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the S3 and S3' subsite specificities of feline immunodeficiency virus (FIV) protease: development of a broad-based protease inhibitor efficacious against FIV, SIV, and HIV in vitro and ex vivo. Lee T; Laco GS; Torbett BE; Fox HS; Lerner DL; Elder JH; Wong CH Proc Natl Acad Sci U S A; 1998 Feb; 95(3):939-44. PubMed ID: 9448264 [TBL] [Abstract][Full Text] [Related]
12. Comparative properties of feline immunodeficiency virus (FIV) and human immunodeficiency virus type 1 (HIV-1) proteinases prepared by total chemical synthesis. Schnölzer M; Rackwitz HR; Gustchina A; Laco GS; Wlodawer A; Elder JH; Kent SB Virology; 1996 Oct; 224(1):268-75. PubMed ID: 8862421 [TBL] [Abstract][Full Text] [Related]
13. Altered gag polyprotein cleavage specificity of feline immunodeficiency virus/human immunodeficiency virus mutant proteases as demonstrated in a cell-based expression system. Lin YC; Brik A; de Parseval A; Tam K; Torbett BE; Wong CH; Elder JH J Virol; 2006 Aug; 80(16):7832-43. PubMed ID: 16873240 [TBL] [Abstract][Full Text] [Related]
14. A new way of looking at aspartic proteinase structures: a comparison of pepsin structure to other aspartic proteinases in the near active site region. Andreeva NS; Bochkarev A; Pechik I Adv Exp Med Biol; 1995; 362():19-32. PubMed ID: 8540318 [No Abstract] [Full Text] [Related]
15. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures. Tong L; Pav S; Pargellis C; Dô F; Lamarre D; Anderson PC Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8387-91. PubMed ID: 8378311 [TBL] [Abstract][Full Text] [Related]
16. Modeling of structure of human immunodeficiency virus-1 protease with substrate based on crystal structure of Rous sarcoma virus protease. Weber IT Methods Enzymol; 1991; 202():727-41. PubMed ID: 1784196 [No Abstract] [Full Text] [Related]
17. Methodology for protein-ligand binding studies: application to a model for drug resistance, the HIV/FIV protease system. Dominy BN; Brooks CL Proteins; 1999 Aug; 36(3):318-31. PubMed ID: 10409825 [TBL] [Abstract][Full Text] [Related]
18. X-ray structures of retroviral proteases and their inhibitor-bound complexes. Ringe D Methods Enzymol; 1994; 241():157-77. PubMed ID: 7854176 [No Abstract] [Full Text] [Related]
19. Comparison of inhibitor binding to feline and human immunodeficiency virus proteases: structure-based drug design and the resistance problem. Dunn BM; Pennington MW; Frase DC; Nash K Biopolymers; 1999; 51(1):69-77. PubMed ID: 10380354 [TBL] [Abstract][Full Text] [Related]
20. Molecular basis for the relative substrate specificity of human immunodeficiency virus type 1 and feline immunodeficiency virus proteases. Beck ZQ; Lin YC; Elder JH J Virol; 2001 Oct; 75(19):9458-69. PubMed ID: 11533208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]