BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 8540564)

  • 41. Region-specific induction of deltaFosB by repeated administration of typical versus atypical antipsychotic drugs.
    Atkins JB; Chlan-Fourney J; Nye HE; Hiroi N; Carlezon WA; Nestler EJ
    Synapse; 1999 Aug; 33(2):118-28. PubMed ID: 10400890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. L-type calcium channel blockade on haloperidol-induced c-Fos expression in the striatum.
    Lee J; Rushlow WJ; Rajakumar N
    Neuroscience; 2007 Nov; 149(3):602-16. PubMed ID: 17913375
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Widespread expression of Fos protein induced by acute haloperidol administration in the rat brain.
    Suzuki M; Sun YJ; Murata M; Kurachi M
    Psychiatry Clin Neurosci; 1998 Jun; 52(3):353-9. PubMed ID: 9681590
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of CFMTI, an allosteric metabotropic glutamate receptor 1 antagonist with antipsychotic activity, on Fos expression in regions of the brain related to schizophrenia.
    Suzuki G; Satow A; Ohta H
    Neuroscience; 2010 Jul; 168(3):787-96. PubMed ID: 20399255
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lack of cross-tolerance between haloperidol and clozapine towards Fos-protein induction in rat forebrain regions.
    Sebens JB; Koch T; Korf J
    Eur J Pharmacol; 1996 Nov; 315(3):269-75. PubMed ID: 8982664
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of desmethylclozapine on Fos protein expression in the forebrain: in vivo biological activity of the clozapine metabolite.
    Young CD; Meltzer HY; Deutch AY
    Neuropsychopharmacology; 1998 Jul; 19(1):99-103. PubMed ID: 9608582
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fos expression in GHB-induced generalized absence epilepsy in the thalamus of the rat.
    Zhang X; Ju G; Le Gal La Salle G
    Neuroreport; 1991 Aug; 2(8):469-72. PubMed ID: 1912482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chronic-intermittent hypoxia induces immediate early gene expression in the midline thalamus and epithalamus.
    Sica AL; Greenberg HE; Scharf SM; Ruggiero DA
    Brain Res; 2000 Nov; 883(2):224-8. PubMed ID: 11074051
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cognitive enhancement with central thalamic electrical stimulation.
    Shirvalkar P; Seth M; Schiff ND; Herrera DG
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):17007-12. PubMed ID: 17065322
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tracheal occlusion modulates the gene expression profile of the medial thalamus in anesthetized rats.
    Bernhardt V; Garcia-Reyero N; Vovk A; Denslow N; Davenport PW
    J Appl Physiol (1985); 2011 Jul; 111(1):117-24. PubMed ID: 21527662
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identifying the
    Joshi RS; Panicker MM
    eNeuro; 2018; 5(5):. PubMed ID: 30713996
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular mechanisms underlying synergistic effects of SSRI-antipsychotic augmentation in treatment of negative symptoms in schizophrenia.
    Chertkow Y; Weinreb O; Youdim MB; Silver H
    J Neural Transm (Vienna); 2009 Nov; 116(11):1529-41. PubMed ID: 19578925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cerebral metabolic changes induced by clozapine in schizophrenia and related to clinical improvement.
    Molina V; Gispert JD; Reig S; Sanz J; Pascau J; Santos A; Desco M; Palomo T
    Psychopharmacology (Berl); 2005 Feb; 178(1):17-26. PubMed ID: 15365682
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Testing the validity of c-fos expression profiling to aid the therapeutic classification of psychoactive drugs.
    Sumner BE; Cruise LA; Slattery DA; Hill DR; Shahid M; Henry B
    Psychopharmacology (Berl); 2004 Jan; 171(3):306-21. PubMed ID: 13680075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia.
    Thompson PM; Vidal C; Giedd JN; Gochman P; Blumenthal J; Nicolson R; Toga AW; Rapoport JL
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11650-5. PubMed ID: 11573002
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The thalamus as a site of action of antipsychotic drugs.
    Cohen BM; Wan W
    Am J Psychiatry; 1996 Jan; 153(1):104-6. PubMed ID: 8540564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cells in midline thalamus, central amygdala, and nucleus accumbens responding specifically to antipsychotic drugs.
    Cohen BM; Cherkerzian S; Ma J; Ye N; Wager C; Lange N
    Psychopharmacology (Berl); 2003 Jun; 167(4):403-10. PubMed ID: 12709776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activation of midline thalamic nuclei by antipsychotic drugs.
    Cohen BM; Wan W; Froimowitz MP; Ennulat DJ; Cherkerzian S; Konieczna H
    Psychopharmacology (Berl); 1998 Jan; 135(1):37-43. PubMed ID: 9489932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antipsychotic drugs induce Fos protein in the thalamic paraventricular nucleus: a novel locus of antipsychotic drug action.
    Deutch AY; Ongür D; Duman RS
    Neuroscience; 1995 May; 66(2):337-46. PubMed ID: 7477876
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.