These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 8540621)
1. Cadmium, copper and zinc complexes of poly-L-cysteine. Autry HA; Holcombe JA Analyst; 1995 Oct; 120(10):2643-7. PubMed ID: 8540621 [TBL] [Abstract][Full Text] [Related]
2. Poly(L-cysteine) as an electrochemically modifiable ligand for trace metal chelation. Johnson AM; Holcombe JA Anal Chem; 2005 Jan; 77(1):30-5. PubMed ID: 15623275 [TBL] [Abstract][Full Text] [Related]
3. Acid-base and metal-ion-binding properties of 9-[2-(2-phosphonoethoxy)ethyl]adenine (PEEA), a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). An exercise on the quantification of isomeric complex equilibria in solution. Fernández-Botello A; Griesser R; Holý A; Moreno V; Sigel H Inorg Chem; 2005 Jul; 44(14):5104-17. PubMed ID: 15998039 [TBL] [Abstract][Full Text] [Related]
4. Quantification of isomeric equilibria formed by metal ion complexes of 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) and 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA). Derivatives of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Gómez-Coca RB; Kapinos LE; Holý A; Vilaplana RA; González-Vílchez F; Sigel H J Biol Inorg Chem; 2004 Dec; 9(8):961-72. PubMed ID: 15503234 [TBL] [Abstract][Full Text] [Related]
5. Extent of metal ion-sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. Odani A; Kozlowski H; Swiatek-Kozlowska J; Brasuń J; Operschall BP; Sigel H J Inorg Biochem; 2007 Apr; 101(4):727-35. PubMed ID: 17320183 [TBL] [Abstract][Full Text] [Related]
6. Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes. Walsh MJ; Ahner BA J Inorg Biochem; 2013 Nov; 128():112-23. PubMed ID: 23954481 [TBL] [Abstract][Full Text] [Related]
7. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine. Remko M; Rode BM J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030 [TBL] [Abstract][Full Text] [Related]
8. Metal-ion-coordinating properties of the dinucleotide 2'-deoxyguanylyl(5'-->3')-2'-deoxy-5'-guanylate (d(pGpG)3-): isomeric equilibria including macrochelated complexes relevant for nucleic acids. Knobloch B; Sigel H; Okruszek A; Sigel RK Chemistry; 2007; 13(6):1804-14. PubMed ID: 17121397 [TBL] [Abstract][Full Text] [Related]
9. Imidazolate bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) complexes of a terpyridinophane azamacrocycle: a solution and solid state study. Verdejo B; Blasco S; García-España E; Lloret F; Gaviña P; Soriano C; Tatay S; Jiménez HR; Doménech A; Latorre J Dalton Trans; 2007 Nov; (41):4726-37. PubMed ID: 17940655 [TBL] [Abstract][Full Text] [Related]
10. Complexation of heavy metals by phytochelatins: voltammetric study of the binding of Cd2+ and Zn2+ ions by the phytochelatin (gamma-Glu-Cys)3Gly assisted by multivariate curve resolution. Cruz BH; Díaz-Cruz JM; Ariño C; Esteban M Environ Sci Technol; 2005 Feb; 39(3):778-86. PubMed ID: 15757339 [TBL] [Abstract][Full Text] [Related]
11. A quantitative appraisal of the ambivalent metal ion binding properties of cytidine in aqueous solution and an estimation of the anti-syn energy barrier of cytidine derivatives. Knobloch B; Sigel H J Biol Inorg Chem; 2004 Apr; 9(3):365-73. PubMed ID: 15034770 [TBL] [Abstract][Full Text] [Related]
12. Interaction of cysteine with Cu2+ and group IIb (Zn2+, Cd2+, Hg2+) metal cations: a theoretical study. Belcastro M; Marino T; Russo N; Toscano M J Mass Spectrom; 2005 Mar; 40(3):300-6. PubMed ID: 15685654 [TBL] [Abstract][Full Text] [Related]
13. Acid-base and metal-ion-binding properties of xanthosine 5'-monophosphate (XMP) in aqueous solution: complex stabilities, isomeric equilibria, and extent of macrochelation. Sigel H; Massoud SS; Song B; Griesser R; Knobloch B; Operschall BP Chemistry; 2006 Oct; 12(31):8106-22. PubMed ID: 16888737 [TBL] [Abstract][Full Text] [Related]
14. Zn(II) chelating with peptides found in sesame protein hydrolysates: identification of the binding sites of complexes. Wang C; Wang C; Li B; Li H Food Chem; 2014 Dec; 165():594-602. PubMed ID: 25038717 [TBL] [Abstract][Full Text] [Related]
15. Control of metal ion size-based selectivity through chelate ring geometry. metal ion complexing properties of 2,2'-biimidazole. Buist D; Williams NJ; Reibenspies JH; Hancock RD Inorg Chem; 2010 Jun; 49(11):5033-9. PubMed ID: 20446716 [TBL] [Abstract][Full Text] [Related]
16. Homo-and heterodinuclear complexes of the tris(catecholamide) derivative of a tetraazamacrocycle with Fe3+, Cu2+ and Zn2+ metal ions. Guerra KP; Delgado R Dalton Trans; 2008 Jan; (4):539-50. PubMed ID: 18185872 [TBL] [Abstract][Full Text] [Related]
17. Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups. Chen CY; Lin MS; Hsu KR J Hazard Mater; 2008 Apr; 152(3):986-93. PubMed ID: 17804161 [TBL] [Abstract][Full Text] [Related]
18. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. Faller P; Hureau C; La Penna G Acc Chem Res; 2014 Aug; 47(8):2252-9. PubMed ID: 24871565 [TBL] [Abstract][Full Text] [Related]
19. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. Pehlivan E; Altun T J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738 [TBL] [Abstract][Full Text] [Related]
20. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of L-histidine and zwitterionic L-histidine. Remko M; Fitz D; Rode BM Amino Acids; 2010 Nov; 39(5):1309-19. PubMed ID: 20364281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]