These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 8541014)

  • 1. Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: lag model for fed-batch fermentation.
    Basak S; Velayudhan A; Ladisch MR
    Biotechnol Prog; 1995; 11(6):626-31. PubMed ID: 8541014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cephalosporin C production by immobilized Cephalosporium acremonium cells in a repeated batch tower bioreactor.
    Cruz AJ; Pan T; Giordano RC; Araujo ML; Hokka CO
    Biotechnol Bioeng; 2004 Jan; 85(1):96-102. PubMed ID: 14705016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining an optimal carbon source/methionine feed strategy for growth and cephalosporin C formation by Cephalosporium acremonium.
    Vicik SM; Fedor AJ; Swartz RW
    Biotechnol Prog; 1990; 6(5):333-40. PubMed ID: 1366872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cybernetic modeling of the cephalosporin C fermentation process by Cephalosporium acremonium.
    Kim BM; Kim SW; Yang DR
    Biotechnol Lett; 2003 Apr; 25(8):611-6. PubMed ID: 12882154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and kinetics studies on cephalosporin C production by Cephalosporium acremonium M25 in a 30-l bioreactor using a mixture of inocula.
    Kim JH; Lim JS; Kim CH; Kim SW
    Lett Appl Microbiol; 2005; 40(5):307-11. PubMed ID: 15836730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and optimization studies of cephalosporin C by solid state fermentation.
    Ellaiah P; Premkumar J; Kanthachari PV; Adinarayana K
    Hindustan Antibiot Bull; 2002; 44(1-4):1-7. PubMed ID: 15061587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of medium composition on the cephalosporin C production with a highly productive strain Cephalosporium acremonium.
    Zhou W; Holzhauer-Rieger K; Dors M; Schügerl K
    J Biotechnol; 1992 May; 23(3):315-29. PubMed ID: 1368249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of cephalosporin C by immobilized cells of Cephalosporium acremonium.
    Ellaiah P; Murali Chand G; Srinivasulu B; Pardhasaradhi SV
    Indian J Exp Biol; 2000 Nov; 38(11):1134-7. PubMed ID: 11395958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid neural network algorithm for on-line state inference that accounts for differences in inoculum of Cephalosporium acremonium in fed-batch fermentors.
    Silva RG; Cruz AJ; Hokka CO; Giordano RL; Giordano RC
    Appl Biochem Biotechnol; 2001; 91-93():341-52. PubMed ID: 11963863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain improvement studies for cephalosporin C production by Cephalosporium acremonium.
    Ellaiah P; Adinarayana K; Chand GM; Subramanyam GS; Srinivasulu B
    Pharmazie; 2002 Jul; 57(7):489-90. PubMed ID: 12168534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
    Kim JH; Han KC; Koh YH; Ryu YW; Seo JH
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modelling of industrial pilot-plant penicillin-G fed-batch fermentations.
    Menezes JC; Alves SS; Lemos JM; de Azevedo SF
    J Chem Technol Biotechnol; 1994 Oct; 61(2):123-38. PubMed ID: 7765415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cephalosporin synthesis in Cephalosporium acremonium by phosphate and glucose.
    Küenzi M
    Arch Microbiol; 1980 Nov; 128(1):78-83. PubMed ID: 7192969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-stage high cell continuous fermentation for high productivity and titer.
    Chang HN; Kim NJ; Kang J; Jeong CM; Choi JD; Fei Q; Kim BJ; Kwon S; Lee SY; Kim J
    Bioprocess Biosyst Eng; 2011 May; 34(4):419-31. PubMed ID: 21127908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
    Hjersted JL; Henson MA
    Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and simulation of cephalosporin C production in a fed-batch tower-type bioreactor.
    Almeida RM; Cruz AJ; Araujo ML; Giordano RC; Hokka CO
    Appl Biochem Biotechnol; 2001; 91-93():537-49. PubMed ID: 11963883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unstructured model for L-lysine fermentation under controlled dissolved oxygen.
    Ensari S; Kim JH; Lim HC
    Biotechnol Prog; 2003; 19(4):1387-90. PubMed ID: 12892508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping.
    Ezeji TC; Qureshi N; Blaschek HP
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):653-8. PubMed ID: 12910325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration.
    Hewitt CJ; Nebe-Von Caron G; Axelsson B; McFarlane CM; Nienow AW
    Biotechnol Bioeng; 2000 Nov; 70(4):381-90. PubMed ID: 11005920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.