These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 8541510)
1. Genomic organization and evolution of the soybean SB92 satellite sequence. Vahedian M; Shi L; Zhu T; Okimoto R; Danna K; Keim P Plant Mol Biol; 1995 Nov; 29(4):857-62. PubMed ID: 8541510 [TBL] [Abstract][Full Text] [Related]
2. The STR120 satellite DNA of soybean: organization, evolution and chromosomal specificity. Morgante M; Jurman I; Shi L; Zhu T; Keim P; Rafalski JA Chromosome Res; 1997 Sep; 5(6):363-73. PubMed ID: 9364938 [TBL] [Abstract][Full Text] [Related]
3. The molecular structure, chromosomal organization, and interspecies distribution of a family of tandemly repeated DNA sequences of Antirrhinum majus L. Schmidt T; Kudla J Genome; 1996 Apr; 39(2):243-8. PubMed ID: 8984001 [TBL] [Abstract][Full Text] [Related]
4. A tandemly repetitive, centromeric DNA sequence from the Canadian woodland caribou (Rangifer tarandus caribou): its conservation and evolution in several deer species. Lee C; Ritchie DB; Lin CC Chromosome Res; 1994 Jul; 2(4):293-306. PubMed ID: 7921645 [TBL] [Abstract][Full Text] [Related]
5. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). Menzel G; Dechyeva D; Wenke T; Holtgräwe D; Weisshaar B; Schmidt T Ann Bot; 2008 Oct; 102(4):521-30. PubMed ID: 18682437 [TBL] [Abstract][Full Text] [Related]
6. A family of dispersed repeats in the genome of Vicia faba: structure, chromosomal organization, redundancy modulation, and evolution. Frediani M; Gelati MT; Maggini F; Galasso I; Minelli S; Ceccarelli M; Cionini PG Chromosoma; 1999 Sep; 108(5):317-24. PubMed ID: 10525968 [TBL] [Abstract][Full Text] [Related]
7. FokI DNA repeats in the genome of Vicia faba: species specificity, structure, redundancy modulation, and nuclear organization. Maggini F; D'Ovidio R; Gelati MT; Frediani M; Cremonini R; Ceccarelli M; Minelli S; Cionini PG Genome; 1995 Dec; 38(6):1255-61. PubMed ID: 8654919 [TBL] [Abstract][Full Text] [Related]
8. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes). Yamada K; Nishida-Umehara C; Matsuda Y Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323 [TBL] [Abstract][Full Text] [Related]
9. An unusual satellite DNA from Zamia paucijuga (Cycadales) characterised by two different organisations of the repetitive unit in the plant genome. Cafasso D; Cozzolino S; De Luca P; Chinali G Gene; 2003 Jun; 311():71-9. PubMed ID: 12853140 [TBL] [Abstract][Full Text] [Related]
10. Soybean chromosome painting: a strategy for somatic cytogenetics. Shi L; Zhu T; Morgante M; Rafalski JA; Keim P J Hered; 1996; 87(4):308-13. PubMed ID: 8776877 [TBL] [Abstract][Full Text] [Related]
11. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Emadzade K; Jang TS; Macas J; Kovařík A; Novák P; Parker J; Weiss-Schneeweiss H Ann Bot; 2014 Dec; 114(8):1597-608. PubMed ID: 25169019 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary diversification of satellite DNA sequences from Leymus (Poaceae: Triticeae). Anamthawat-Jónsson K; Wenke T; Thórsson AT; Sveinsson S; Zakrzewski F; Schmidt T Genome; 2009 Apr; 52(4):381-90. PubMed ID: 19370093 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans. Ribeiro T; Dos Santos KG; Richard MM; Sévignac M; Thareau V; Geffroy V; Pedrosa-Harand A Protoplasma; 2017 Mar; 254(2):791-801. PubMed ID: 27335007 [TBL] [Abstract][Full Text] [Related]
14. Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Staginnus C; Winter P; Desel C; Schmidt T; Kahl G Plant Mol Biol; 1999 Mar; 39(5):1037-50. PubMed ID: 10344208 [TBL] [Abstract][Full Text] [Related]
15. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Schmidt T; Heslop-Harrison JS Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122 [TBL] [Abstract][Full Text] [Related]
16. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite. Durfy SJ; Willard HF J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932 [TBL] [Abstract][Full Text] [Related]
17. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Novák P; Ávila Robledillo L; Koblížková A; Vrbová I; Neumann P; Macas J Nucleic Acids Res; 2017 Jul; 45(12):e111. PubMed ID: 28402514 [TBL] [Abstract][Full Text] [Related]
18. [Cloning, sequencing and characterizing repetitive DNA of Glycine max]. Hui D; Liu F; Chen S; Wang J; Yan Y; Miao Y Yi Chuan Xue Bao; 1995; 22(6):455-62. PubMed ID: 8900841 [TBL] [Abstract][Full Text] [Related]
19. Molecular and chromosomal evidence for allopolyploidy in soybean. Gill N; Findley S; Walling JG; Hans C; Ma J; Doyle J; Stacey G; Jackson SA Plant Physiol; 2009 Nov; 151(3):1167-74. PubMed ID: 19605552 [TBL] [Abstract][Full Text] [Related]
20. Characterization, evolution and chromosomal distribution of two satellite DNA sequence families in Lathyrus species. Ceccarelli M; Sarri V; Polizzi E; Andreozzi G; Cionini PG Cytogenet Genome Res; 2010 Jun; 128(4):236-44. PubMed ID: 20424423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]