These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 8541984)
1. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Shreve GS; Inguva S; Gunnam S Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984 [TBL] [Abstract][Full Text] [Related]
2. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Koch AK; Käppeli O; Fiechter A; Reiser J J Bacteriol; 1991 Jul; 173(13):4212-9. PubMed ID: 1648079 [TBL] [Abstract][Full Text] [Related]
3. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508 [TBL] [Abstract][Full Text] [Related]
4. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Herman DC; Zhang Y; Miller RM Appl Environ Microbiol; 1997 Sep; 63(9):3622-7. PubMed ID: 9293014 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Ochsner UA; Koch AK; Fiechter A; Reiser J J Bacteriol; 1994 Apr; 176(7):2044-54. PubMed ID: 8144472 [TBL] [Abstract][Full Text] [Related]
6. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. Noordman WH; Wachter JH; de Boer GJ; Janssen DB J Biotechnol; 2002 Mar; 94(2):195-212. PubMed ID: 11796172 [TBL] [Abstract][Full Text] [Related]
7. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. Beal R; Betts WB J Appl Microbiol; 2000 Jul; 89(1):158-68. PubMed ID: 10945793 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Zhong H; Zeng GM; Liu JX; Xu XM; Yuan XZ; Fu HY; Huang GH; Liu ZF; Ding Y Appl Microbiol Biotechnol; 2008 Jun; 79(4):671-7. PubMed ID: 18443784 [TBL] [Abstract][Full Text] [Related]
9. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Raza ZA; Khan MS; Khalid ZM; Rehman A Biotechnol Lett; 2006 Oct; 28(20):1623-31. PubMed ID: 16955358 [TBL] [Abstract][Full Text] [Related]
10. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Noordman WH; Janssen DB Appl Environ Microbiol; 2002 Sep; 68(9):4502-8. PubMed ID: 12200306 [TBL] [Abstract][Full Text] [Related]
11. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Holden PA; LaMontagne MG; Bruce AK; Miller WG; Lindow SE Appl Environ Microbiol; 2002 May; 68(5):2509-18. PubMed ID: 11976128 [TBL] [Abstract][Full Text] [Related]
12. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related]
13. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Zhang Y; Miller RM Appl Environ Microbiol; 1994 Jun; 60(6):2101-6. PubMed ID: 8031099 [TBL] [Abstract][Full Text] [Related]
14. Enhanced aqueous solubilization of tetrachloroethylene by a rhamnolipid biosurfactant. Clifford JS; Ioannidis MA; Legge RL J Colloid Interface Sci; 2007 Jan; 305(2):361-5. PubMed ID: 17081555 [TBL] [Abstract][Full Text] [Related]
15. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene. Shin KH; Kim KW; Seagren EA Appl Microbiol Biotechnol; 2004 Aug; 65(3):336-43. PubMed ID: 15309342 [TBL] [Abstract][Full Text] [Related]
16. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Bharali P; Konwar BK Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636 [TBL] [Abstract][Full Text] [Related]
17. lux-marked Pseudomonas aeruginosa lipopolysaccharide production in the presence of rhamnolipid. Chen G; Zhu H Colloids Surf B Biointerfaces; 2005 Mar; 41(1):43-8. PubMed ID: 15698755 [TBL] [Abstract][Full Text] [Related]
18. Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E. Chrzanowski L; Wick LY; Meulenkamp R; Kaestner M; Heipieper HJ Lett Appl Microbiol; 2009 Jun; 48(6):756-62. PubMed ID: 19344356 [TBL] [Abstract][Full Text] [Related]
19. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants. Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757 [TBL] [Abstract][Full Text] [Related]
20. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Rahman KS; Rahman TJ; McClean S; Marchant R; Banat IM Biotechnol Prog; 2002; 18(6):1277-81. PubMed ID: 12467462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]