BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 8541984)

  • 21. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant).
    Zhang Y; Miller RM
    Appl Environ Microbiol; 1992 Oct; 58(10):3276-82. PubMed ID: 1444363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds.
    Fuchedzhieva N; Karakashev D; Angelidaki I
    J Hazard Mater; 2008 May; 153(1-2):123-7. PubMed ID: 17869417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix.
    Zeng G; Fu H; Zhong H; Yuan X; Fu M; Wang W; Huang G
    Biodegradation; 2007 Jun; 18(3):303-10. PubMed ID: 17106758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhamnolipid biosurfactant mixtures for environmental remediation.
    Nguyen TT; Youssef NH; McInerney MJ; Sabatini DA
    Water Res; 2008 Mar; 42(6-7):1735-43. PubMed ID: 18035390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction?
    Liu Y; Zeng G; Zhong H; Wang Z; Liu Z; Cheng M; Liu G; Yang X; Liu S
    J Hazard Mater; 2017 Jan; 322(Pt B):394-401. PubMed ID: 27773441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and encapsulation efficiency of rhamnolipid vesicles with cholesterol addition.
    Pornsunthorntawee O; Chavadej S; Rujiravanit R
    J Biosci Bioeng; 2011 Jul; 112(1):102-6. PubMed ID: 21489867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils.
    Camilios Neto D; Meira JA; Tiburtius E; Zamora PP; Bugay C; Mitchell DA; Krieger N
    Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20.
    Abdel-Mawgoud AM; Aboulwafa MM; Hassouna NA
    Appl Biochem Biotechnol; 2009 May; 157(2):329-45. PubMed ID: 18584127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa.
    Bazire A; Dheilly A; Diab F; Morin D; Jebbar M; Haras D; Dufour A
    FEMS Microbiol Lett; 2005 Dec; 253(1):125-31. PubMed ID: 16239086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source.
    Lee Y; Lee SY; Yang JW
    Biosci Biotechnol Biochem; 1999 May; 63(5):946-7. PubMed ID: 10380638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Hori K; Marsudi S; Unno H
    Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida.
    Cha M; Lee N; Kim M; Kim M; Lee S
    Bioresour Technol; 2008 May; 99(7):2192-9. PubMed ID: 17611103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of biosurfactant on the diesel oil remediation in soil-water system.
    Li YY; Zheng XL; Li B
    J Environ Sci (China); 2006; 18(3):587-90. PubMed ID: 17294662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyhydroxyalkanoic acids and rhamnolipids are synthesized sequentially in hexadecane fermentation by Pseudomonas aeruginosa ATCC 10145.
    Chayabutra C; Ju LK
    Biotechnol Prog; 2001; 17(3):419-23. PubMed ID: 11386860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of rhamnolipid on degradation of granular organic substrate from kitchen waste by a Pseudomonas aeruginosa strain.
    Fu H; Zeng G; Zhong H; Yuan X; Wang W; Huang G; Li J
    Colloids Surf B Biointerfaces; 2007 Aug; 58(2):91-7. PubMed ID: 17368866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene.
    Kahraman H; Erenler SO
    Prikl Biokhim Mikrobiol; 2012; 48(2):212-7. PubMed ID: 22586915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater.
    Vasileva-Tonkova E; Sotirova A; Galabova D
    Curr Microbiol; 2011 Feb; 62(2):427-33. PubMed ID: 20680280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran.
    Lotfabad TB; Shourian M; Roostaazad R; Najafabadi AR; Adelzadeh MR; Noghabi KA
    Colloids Surf B Biointerfaces; 2009 Mar; 69(2):183-93. PubMed ID: 19131218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulating in-soil rhamnolipid production in a bioslurry reactor by limiting nitrogen.
    Hudak AJ; Cassidy DP
    Biotechnol Bioeng; 2004 Dec; 88(7):861-8. PubMed ID: 15538720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.