These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8542064)

  • 41. Specificity of projections from wide-field and local motion-processing regions within the middle temporal visual area of the owl monkey.
    Berezovskii VK; Born RT
    J Neurosci; 2000 Feb; 20(3):1157-69. PubMed ID: 10648720
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two expressions of "surround suppression" in V1 that arise independent of cortical mechanisms of suppression.
    Tailby C; Solomon SG; Peirce JW; Metha AB
    Vis Neurosci; 2007; 24(1):99-109. PubMed ID: 17430613
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation.
    Maunsell JH; Van Essen DC
    J Neurophysiol; 1983 May; 49(5):1127-47. PubMed ID: 6864242
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppressive surrounds of receptive fields in monkey frontal eye field.
    Cavanaugh J; Joiner WM; Wurtz RH
    J Neurosci; 2012 Aug; 32(35):12284-93. PubMed ID: 22933810
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microstimulation of extrastriate area MST influences performance on a direction discrimination task.
    Celebrini S; Newsome WT
    J Neurophysiol; 1995 Feb; 73(2):437-48. PubMed ID: 7760110
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns.
    Schaafsma SJ; Duysens J
    J Neurophysiol; 1996 Dec; 76(6):4056-68. PubMed ID: 8985900
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The contribution of vertical and horizontal connections to the receptive field center and surround in V1.
    Chisum HJ; Fitzpatrick D
    Neural Netw; 2004; 17(5-6):681-93. PubMed ID: 15288892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas.
    Elston GN; Rosa MG
    Cereb Cortex; 1997; 7(5):432-52. PubMed ID: 9261573
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters.
    Raiguel SE; Xiao DK; Marcar VL; Orban GA
    J Neurophysiol; 1999 Oct; 82(4):1944-56. PubMed ID: 10515984
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Perceptual consequences of centre-surround antagonism in visual motion processing.
    Tadin D; Lappin JS; Gilroy LA; Blake R
    Nature; 2003 Jul; 424(6946):312-5. PubMed ID: 12867982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity.
    Maunsell JH; Van Essen DC
    J Neurophysiol; 1983 May; 49(5):1148-67. PubMed ID: 6864243
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Uniformity and diversity of response properties of neurons in the primary visual cortex: selectivity for orientation, direction of motion, and stimulus size from center to far periphery.
    Yu HH; Rosa MG
    Vis Neurosci; 2014 Jan; 31(1):85-98. PubMed ID: 24160942
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey.
    Knierim JJ; van Essen DC
    J Neurophysiol; 1992 Apr; 67(4):961-80. PubMed ID: 1588394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): middle temporal area, middle temporal crescent, and surrounding cortex.
    Rosa MG; Elston GN
    J Comp Neurol; 1998 Apr; 393(4):505-27. PubMed ID: 9550155
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional properties of neurons in macaque area V3.
    Gegenfurtner KR; Kiper DC; Levitt JB
    J Neurophysiol; 1997 Apr; 77(4):1906-23. PubMed ID: 9114244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons?
    Angelucci A; Bullier J
    J Physiol Paris; 2003; 97(2-3):141-54. PubMed ID: 14766139
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial receptive field organization of macaque V4 neurons.
    Pollen DA; Przybyszewski AW; Rubin MA; Foote W
    Cereb Cortex; 2002 Jun; 12(6):601-16. PubMed ID: 12003860
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity.
    Orban GA; Kennedy H; Bullier J
    J Neurophysiol; 1986 Aug; 56(2):462-80. PubMed ID: 3760931
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Visual spatial characterization of macaque V1 neurons.
    Sceniak MP; Hawken MJ; Shapley R
    J Neurophysiol; 2001 May; 85(5):1873-87. PubMed ID: 11353004
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis.
    Ben Hamed S; Duhamel JR; Bremmer F; Graf W
    Exp Brain Res; 2001 Sep; 140(2):127-44. PubMed ID: 11521146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.