BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 8542993)

  • 1. Crithidia luciliae: effect of purine starvation on S-adenosyl-L-methionine uptake and protein methylation.
    Alleman MM; Mann VH; Bacchi CJ; Yarlett N; Gottlieb M; Dwyer DM
    Exp Parasitol; 1995 Dec; 81(4):519-28. PubMed ID: 8542993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crithidia luciliae: regulation of purine nucleoside transport by extracellular purine concentrations.
    Hall ST; Hillier CJ; Gero AM
    Exp Parasitol; 1996 Aug; 83(3):314-21. PubMed ID: 8823248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced acquisition of purine nucleosides and nucleobases by purine-starved Crithidia luciliae.
    Alleman MM; Gottlieb M
    Mol Biochem Parasitol; 1996; 76(1-2):279-87. PubMed ID: 8920013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of secretagogues on ATP levels and protein carboxyl methylation in rat brain synaptosomes.
    Bjorndahl JM; Rutledge CO
    J Pharmacol Exp Ther; 1986 May; 237(2):569-76. PubMed ID: 2422345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crithidia luciliae: starvation for purines and/or phosphate leads to the enhanced surface expression of a protein responsible for 3'-nucleotidase/nuclease activity.
    Alleman MM; Gottlieb M
    Exp Parasitol; 1990 Aug; 71(2):146-57. PubMed ID: 2164951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-L-methionine.
    Iwig DF; Booker SJ
    Biochemistry; 2004 Oct; 43(42):13496-509. PubMed ID: 15491157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crithidia luciliae: functional expression of nucleoside and nucleobase transporters in Xenopus laevis oocytes.
    Hall ST; Penny JI; Gero AM; Krishna S
    Exp Parasitol; 1998 Oct; 90(2):181-8. PubMed ID: 9769248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of diazepam on brain levels of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine: possible correlation with protection from methionine sulfoximine seizures.
    Gill MW; Schatz RA
    Res Commun Chem Pathol Pharmacol; 1985 Dec; 50(3):349-63. PubMed ID: 4081323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein carboxyl methylation-demethylation in rat thymocytes.
    Fetters HA; Kelleher J; Duerre JA
    Can J Biochem Cell Biol; 1985 Oct; 63(10):1112-9. PubMed ID: 4075225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to multiple adenine nucleoside and methionine analogues in mutant murine lymphoma cells with enlarged S-adenosylmethionine pools.
    Kajander EO; Kubota M; Carrera CJ; Montgomery JA; Carson DA
    Cancer Res; 1986 Jun; 46(6):2866-70. PubMed ID: 3698011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonintracellular, cell-associated O-methylation of isoproterenol in the isolated rabbit thoracic aorta.
    Head RJ; Irvine RJ; Barone S; Stitzel RE; de la Lande IS
    J Pharmacol Exp Ther; 1985 Jul; 234(1):184-9. PubMed ID: 4009500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct photolabeling of the EcoRII methyltransferase with S-adenosyl-L-methionine.
    Som S; Friedman S
    J Biol Chem; 1990 Mar; 265(8):4278-83. PubMed ID: 2407734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of S-adenosylmethionine cellular transport and protein methylation in Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense.
    Goldberg B; Rattendi D; Lloyd D; Yarlett N; Bacchi CJ
    Arch Biochem Biophys; 1999 Apr; 364(1):13-8. PubMed ID: 10087160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of EcoP1 modification methylase with S-adenosyl-L-methionine: a UV-crosslinking study.
    Krishnamurthy V; Rao DN
    Biochem Mol Biol Int; 1994 Mar; 32(4):623-32. PubMed ID: 8038713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of some metabolic effects of S-neplanocylmethionine.
    Keller BT; Clark RS; Pegg AE; Borchardt RT
    Mol Pharmacol; 1985 Oct; 28(4):364-70. PubMed ID: 3903471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulated transport of adenosine, guanosine and hypoxanthine in Crithidia luciliae: metabolic machinery in which the parasite has a distinct advantage over the host.
    Gero AM; Day RE; Hall ST
    Int J Parasitol; 1997 Feb; 27(2):241-9. PubMed ID: 9088994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of protein carboxyl methylation in the rat hypothalamus.
    Eiden LE; Borchardt RT; Rutledge CO
    J Neurochem; 1982 Mar; 38(3):631-7. PubMed ID: 7057183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and electrophoretic analysis of transmethylation reactions in intact Xenopus laevis oocytes.
    O'Connor CM; Germain BJ
    J Biol Chem; 1987 Jul; 262(21):10404-11. PubMed ID: 3611067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes.
    Møller MT; Samari HR; Fengsrud M; Strømhaug PE; øStvold AC; Seglen PO
    Biochem J; 2003 Jul; 373(Pt 2):505-13. PubMed ID: 12697024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B; Shieh FK; Buller F; Bullock T; Reich NO
    Biochemistry; 2007 Jul; 46(30):8766-75. PubMed ID: 17616174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.