These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 8542993)
1. Crithidia luciliae: effect of purine starvation on S-adenosyl-L-methionine uptake and protein methylation. Alleman MM; Mann VH; Bacchi CJ; Yarlett N; Gottlieb M; Dwyer DM Exp Parasitol; 1995 Dec; 81(4):519-28. PubMed ID: 8542993 [TBL] [Abstract][Full Text] [Related]
2. Crithidia luciliae: regulation of purine nucleoside transport by extracellular purine concentrations. Hall ST; Hillier CJ; Gero AM Exp Parasitol; 1996 Aug; 83(3):314-21. PubMed ID: 8823248 [TBL] [Abstract][Full Text] [Related]
3. Enhanced acquisition of purine nucleosides and nucleobases by purine-starved Crithidia luciliae. Alleman MM; Gottlieb M Mol Biochem Parasitol; 1996; 76(1-2):279-87. PubMed ID: 8920013 [TBL] [Abstract][Full Text] [Related]
4. Effects of secretagogues on ATP levels and protein carboxyl methylation in rat brain synaptosomes. Bjorndahl JM; Rutledge CO J Pharmacol Exp Ther; 1986 May; 237(2):569-76. PubMed ID: 2422345 [TBL] [Abstract][Full Text] [Related]
5. Crithidia luciliae: starvation for purines and/or phosphate leads to the enhanced surface expression of a protein responsible for 3'-nucleotidase/nuclease activity. Alleman MM; Gottlieb M Exp Parasitol; 1990 Aug; 71(2):146-57. PubMed ID: 2164951 [TBL] [Abstract][Full Text] [Related]
6. Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-L-methionine. Iwig DF; Booker SJ Biochemistry; 2004 Oct; 43(42):13496-509. PubMed ID: 15491157 [TBL] [Abstract][Full Text] [Related]
7. Crithidia luciliae: functional expression of nucleoside and nucleobase transporters in Xenopus laevis oocytes. Hall ST; Penny JI; Gero AM; Krishna S Exp Parasitol; 1998 Oct; 90(2):181-8. PubMed ID: 9769248 [TBL] [Abstract][Full Text] [Related]
8. The effect of diazepam on brain levels of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine: possible correlation with protection from methionine sulfoximine seizures. Gill MW; Schatz RA Res Commun Chem Pathol Pharmacol; 1985 Dec; 50(3):349-63. PubMed ID: 4081323 [TBL] [Abstract][Full Text] [Related]
9. Protein carboxyl methylation-demethylation in rat thymocytes. Fetters HA; Kelleher J; Duerre JA Can J Biochem Cell Biol; 1985 Oct; 63(10):1112-9. PubMed ID: 4075225 [TBL] [Abstract][Full Text] [Related]
10. Resistance to multiple adenine nucleoside and methionine analogues in mutant murine lymphoma cells with enlarged S-adenosylmethionine pools. Kajander EO; Kubota M; Carrera CJ; Montgomery JA; Carson DA Cancer Res; 1986 Jun; 46(6):2866-70. PubMed ID: 3698011 [TBL] [Abstract][Full Text] [Related]
11. Nonintracellular, cell-associated O-methylation of isoproterenol in the isolated rabbit thoracic aorta. Head RJ; Irvine RJ; Barone S; Stitzel RE; de la Lande IS J Pharmacol Exp Ther; 1985 Jul; 234(1):184-9. PubMed ID: 4009500 [TBL] [Abstract][Full Text] [Related]
12. Direct photolabeling of the EcoRII methyltransferase with S-adenosyl-L-methionine. Som S; Friedman S J Biol Chem; 1990 Mar; 265(8):4278-83. PubMed ID: 2407734 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of S-adenosylmethionine cellular transport and protein methylation in Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. Goldberg B; Rattendi D; Lloyd D; Yarlett N; Bacchi CJ Arch Biochem Biophys; 1999 Apr; 364(1):13-8. PubMed ID: 10087160 [TBL] [Abstract][Full Text] [Related]
14. Interaction of EcoP1 modification methylase with S-adenosyl-L-methionine: a UV-crosslinking study. Krishnamurthy V; Rao DN Biochem Mol Biol Int; 1994 Mar; 32(4):623-32. PubMed ID: 8038713 [TBL] [Abstract][Full Text] [Related]
15. Purification and characterization of some metabolic effects of S-neplanocylmethionine. Keller BT; Clark RS; Pegg AE; Borchardt RT Mol Pharmacol; 1985 Oct; 28(4):364-70. PubMed ID: 3903471 [TBL] [Abstract][Full Text] [Related]
16. Stimulated transport of adenosine, guanosine and hypoxanthine in Crithidia luciliae: metabolic machinery in which the parasite has a distinct advantage over the host. Gero AM; Day RE; Hall ST Int J Parasitol; 1997 Feb; 27(2):241-9. PubMed ID: 9088994 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of protein carboxyl methylation in the rat hypothalamus. Eiden LE; Borchardt RT; Rutledge CO J Neurochem; 1982 Mar; 38(3):631-7. PubMed ID: 7057183 [TBL] [Abstract][Full Text] [Related]
18. Kinetic and electrophoretic analysis of transmethylation reactions in intact Xenopus laevis oocytes. O'Connor CM; Germain BJ J Biol Chem; 1987 Jul; 262(21):10404-11. PubMed ID: 3611067 [TBL] [Abstract][Full Text] [Related]
19. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes. Møller MT; Samari HR; Fengsrud M; Strømhaug PE; øStvold AC; Seglen PO Biochem J; 2003 Jul; 373(Pt 2):505-13. PubMed ID: 12697024 [TBL] [Abstract][Full Text] [Related]