These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 8543649)
41. Sexual differentiation of androgen accumulation within the zebra finch brain through selective cell loss and addition. Nordeen EJ; Nordeen KW; Arnold AP J Comp Neurol; 1987 May; 259(3):393-9. PubMed ID: 3584563 [TBL] [Abstract][Full Text] [Related]
42. Adult female and male zebra finches show distinct patterns of spine deficits in an auditory area and in the song system when reared without exposure to normal adult song. Lauay C; Komorowski RW; Beaudin AE; Devoogd TJ J Comp Neurol; 2005 Jun; 487(2):119-26. PubMed ID: 15880474 [TBL] [Abstract][Full Text] [Related]
43. [Effects of vocalization and respiration and fiber connections on hyperstriatum ventrale pars caudale in Fringilla montifringilla]. Zhang XW; Chen Y; Chang YC; Yang XH; Su GP Sheng Li Xue Bao; 1994 Oct; 46(5):451-7. PubMed ID: 7846544 [TBL] [Abstract][Full Text] [Related]
44. Lack of a synergistic effect between estradiol and dihydrotestosterone in the masculinization of the zebra finch song system. Jacobs EC; Grisham W; Arnold AP J Neurobiol; 1995 Aug; 27(4):513-9. PubMed ID: 7561830 [TBL] [Abstract][Full Text] [Related]
45. Expression of mu- and delta-opioid receptors in song control regions of adult male zebra finches (Taenopygia guttata). Khurshid N; Agarwal V; Iyengar S J Chem Neuroanat; 2009 May; 37(3):158-69. PubMed ID: 19118622 [TBL] [Abstract][Full Text] [Related]
46. Expression of the GABA(A) receptor gamma4-subunit gene in discrete nuclei within the zebra finch song system. Thode C; Güttinger HR; Darlison MG Neuroscience; 2008 Nov; 157(1):143-52. PubMed ID: 18824085 [TBL] [Abstract][Full Text] [Related]
47. High vocal center growth and its relation to neurogenesis, neuronal replacement and song acquisition in juvenile canaries. Alvarez-Buylla A; Ling CY; Nottebohm F J Neurobiol; 1992 Jun; 23(4):396-406. PubMed ID: 1634887 [TBL] [Abstract][Full Text] [Related]
48. Song-selective auditory circuits in the vocal control system of the zebra finch. Doupe AJ; Konishi M Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11339-43. PubMed ID: 1763048 [TBL] [Abstract][Full Text] [Related]
49. Developmental origin and identity of song system neurons born during vocal learning in songbirds. Scott BB; Lois C J Comp Neurol; 2007 May; 502(2):202-14. PubMed ID: 17348018 [TBL] [Abstract][Full Text] [Related]
50. Organization of afferent and efferent projections of the nucleus basalis prosencephali in a passerine, Taeniopygia guttata. Wild JM; Farabaugh SM J Comp Neurol; 1996 Feb; 365(2):306-28. PubMed ID: 8822172 [TBL] [Abstract][Full Text] [Related]
51. Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. Alvarez-Buylla A; Kirn JR J Neurobiol; 1997 Nov; 33(5):585-601. PubMed ID: 9369461 [TBL] [Abstract][Full Text] [Related]
52. Singing-related activity of identified HVC neurons in the zebra finch. Kozhevnikov AA; Fee MS J Neurophysiol; 2007 Jun; 97(6):4271-83. PubMed ID: 17182906 [TBL] [Abstract][Full Text] [Related]
53. Cell types of the auditory caudomedial neostriatum of the starling (Sturnus vulgaris). Saini KD; Leppelsack HJ J Comp Neurol; 1981 May; 198(2):209-29. PubMed ID: 7240442 [TBL] [Abstract][Full Text] [Related]
54. The hippocampus and caudomedial neostriatum show selective responsiveness to conspecific song in the female zebra finch. Bailey DJ; Rosebush JC; Wade J J Neurobiol; 2002 Jul; 52(1):43-51. PubMed ID: 12115892 [TBL] [Abstract][Full Text] [Related]
55. Functional evidence for internal feedback in the songbird brain nucleus HVC. Seki Y; Okanoya K Neuroreport; 2008 Apr; 19(6):679-82. PubMed ID: 18382286 [TBL] [Abstract][Full Text] [Related]
56. HVC microlesions do not destabilize the vocal patterns of adult male zebra finches with prior ablation of LMAN. Thompson JA; Johnson F Dev Neurobiol; 2007 Feb; 67(2):205-18. PubMed ID: 17443783 [TBL] [Abstract][Full Text] [Related]
57. Multiple cell types distinguished by physiological, pharmacological, and anatomic properties in nucleus HVc of the adult zebra finch. Dutar P; Vu HM; Perkel DJ J Neurophysiol; 1998 Oct; 80(4):1828-38. PubMed ID: 9772242 [TBL] [Abstract][Full Text] [Related]
58. Functional magnetic resonance imaging in zebra finch discerns the neural substrate involved in segregation of conspecific song from background noise. Boumans T; Vignal C; Smolders A; Sijbers J; Verhoye M; Van Audekerke J; Mathevon N; Van der Linden A J Neurophysiol; 2008 Feb; 99(2):931-8. PubMed ID: 17881485 [TBL] [Abstract][Full Text] [Related]
59. Estrogen receptors in the avian brain: survey reveals general distribution and forebrain areas unique to songbirds. Gahr M; Güttinger HR; Kroodsma DE J Comp Neurol; 1993 Jan; 327(1):112-22. PubMed ID: 8432903 [TBL] [Abstract][Full Text] [Related]
60. Song system auditory responses are stable and highly tuned during sedation, rapidly modulated and unselective during wakefulness, and suppressed by arousal. Cardin JA; Schmidt MF J Neurophysiol; 2003 Nov; 90(5):2884-99. PubMed ID: 12878713 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]