BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8544424)

  • 21. Regulation of heme oxygenase-1 gene expression by anoxia and reoxygenation in primary rat hepatocyte cultures.
    Ohlmann A; Giffhorn-Katz S; Becker I; Katz N; Immenschuh S
    Exp Biol Med (Maywood); 2003 May; 228(5):584-9. PubMed ID: 12709591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity.
    Paller MS
    Am J Physiol; 1988 Sep; 255(3 Pt 2):F539-44. PubMed ID: 3414810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of endothelial heme oxygenase activity during hypoxia is dependent on chelatable iron.
    Ryter SW; Si M; Lai CC; Su CY
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2889-97. PubMed ID: 11087245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induction of heme oxygenase-1 by hypoxia and free radicals in human dermal fibroblasts.
    Panchenko MV; Farber HW; Korn JH
    Am J Physiol Cell Physiol; 2000 Jan; 278(1):C92-C101. PubMed ID: 10644516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parenteral iron nephrotoxicity: potential mechanisms and consequences.
    Zager RA; Johnson AC; Hanson SY
    Kidney Int; 2004 Jul; 66(1):144-56. PubMed ID: 15200421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct detection of endogenous hydroxyl radical production in cultured adult cardiomyocytes during anoxia and reoxygenation. Is the hydroxyl radical really the most damaging radical species?
    Khalid MA; Ashraf M
    Circ Res; 1993 Apr; 72(4):725-36. PubMed ID: 8383013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of glutathione, Trolox and desferrioxamine on hemoglobin-induced protein oxidative damage: anti-oxidant or pro-oxidant?
    Lu N; Chen W; Peng YY
    Eur J Pharmacol; 2011 Jun; 659(2-3):95-101. PubMed ID: 21419762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postischemic proximal tubular resistance to oxidant stress and Ca2+ ionophore-induced attack. Implications for reperfusion injury.
    Zager RA; Burkhart KM; Gmur DJ
    Lab Invest; 1995 May; 72(5):592-600. PubMed ID: 7745953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute depletion of reduced glutathione causes extensive carbonylation of rat brain proteins.
    Bizzozero OA; Ziegler JL; De Jesus G; Bolognani F
    J Neurosci Res; 2006 Mar; 83(4):656-67. PubMed ID: 16447283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat.
    Chatterjee PK; Cuzzocrea S; Brown PA; Zacharowski K; Stewart KN; Mota-Filipe H; Thiemermann C
    Kidney Int; 2000 Aug; 58(2):658-73. PubMed ID: 10916089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells.
    Adedoyin O; Boddu R; Traylor A; Lever JM; Bolisetty S; George JF; Agarwal A
    Am J Physiol Renal Physiol; 2018 May; 314(5):F702-F714. PubMed ID: 28515173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional distribution of heme oxygenase, HSP70, and glutathione in brain: relevance for endogenous oxidant/antioxidant balance and stress tolerance.
    Calabrese V; Scapagnini G; Ravagna A; Fariello RG; Giuffrida Stella AM; Abraham NG
    J Neurosci Res; 2002 Apr; 68(1):65-75. PubMed ID: 11933050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity.
    Zager RA; Johnson AC; Hanson SY
    Kidney Int; 2003 Jul; 64(1):128-39. PubMed ID: 12787403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Statin-induced heme oxygenase-1 increases NF-kappaB activation and oxygen radical production in cultured neuronal cells exposed to lipopolysaccharide.
    Hsieh CH; Jeng SF; Hsieh MW; Chen YC; Rau CS; Lu TH; Chen SS
    Toxicol Sci; 2008 Mar; 102(1):150-9. PubMed ID: 18073186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria.
    Plotnikov EY; Chupyrkina AA; Pevzner IB; Isaev NK; Zorov DB
    Biochim Biophys Acta; 2009 Aug; 1792(8):796-803. PubMed ID: 19545623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cold preservation of isolated rabbit proximal tubules induces radical-mediated cell injury.
    Peters SM; Rauen U; Tijsen MJ; Bindels RJ; van Os CH; de Groot H; Wetzels JF
    Transplantation; 1998 Mar; 65(5):625-32. PubMed ID: 9521195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abnormal iron deposition in renal cells in the rat with chronic angiotensin II administration.
    Ishizaka N; Aizawa T; Yamazaki I; Usui S; Mori I; Kurokawa K; Tang SS; Ingelfinger JR; Ohno M; Nagai R
    Lab Invest; 2002 Jan; 82(1):87-96. PubMed ID: 11796829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myoglobin inhibits proliferation of cultured human proximal tubular (HK-2) cells.
    Iwata M; Zager RA
    Kidney Int; 1996 Sep; 50(3):796-804. PubMed ID: 8872953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid peroxidation in hepatocyte cell cultures: modulation by free radical scavengers and iron.
    Innes GK; Fuller BJ; Hobbs KE
    In Vitro Cell Dev Biol; 1988 Feb; 24(2):126-32. PubMed ID: 3125142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute cholestatic liver disease protects against glycerol-induced acute renal failure in the rat.
    Leung N; Croatt AJ; Haggard JJ; Grande JP; Nath KA
    Kidney Int; 2001 Sep; 60(3):1047-57. PubMed ID: 11532099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.