These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 8544836)
1. Activation of cyclic nucleotide phosphodiesterases in FRTL-5 thyroid cells expressing a constitutively active Gs alpha. Nemoz G; Sette C; Hess M; Muca C; Vallar L; Conti M Mol Endocrinol; 1995 Oct; 9(10):1279-87. PubMed ID: 8544836 [TBL] [Abstract][Full Text] [Related]
2. The short-term activation of a rolipram-sensitive, cAMP-specific phosphodiesterase by thyroid-stimulating hormone in thyroid FRTL-5 cells is mediated by a cAMP-dependent phosphorylation. Sette C; Iona S; Conti M J Biol Chem; 1994 Mar; 269(12):9245-52. PubMed ID: 8132662 [TBL] [Abstract][Full Text] [Related]
3. Long-term hormonal regulation of the cAMP-specific phosphodiesterases in cultured FRTL-5 thyroid cells. Takahashi SI; Nedachi T; Fukushima T; Umesaki K; Ito Y; Hakuno F; Van Wyk JJ; Conti M Biochim Biophys Acta; 2001 Jul; 1540(1):68-81. PubMed ID: 11476896 [TBL] [Abstract][Full Text] [Related]
4. Comparative involvement of cyclic nucleotide phosphodiesterases and adenylyl cyclase on adrenocorticotropin-induced increase of cyclic adenosine monophosphate in rat and human glomerulosa cells. Côté M; Payet MD; Rousseau E; Guillon G; Gallo-Payet N Endocrinology; 1999 Aug; 140(8):3594-601. PubMed ID: 10433216 [TBL] [Abstract][Full Text] [Related]
5. Stimulation of beta adrenoceptors in a human monocyte cell line (U937) up-regulates cyclic AMP-specific phosphodiesterase activity. Torphy TJ; Zhou HL; Cieslinski LB J Pharmacol Exp Ther; 1992 Dec; 263(3):1195-205. PubMed ID: 1335058 [TBL] [Abstract][Full Text] [Related]
6. Porcine detrusor cyclic nucleotide phosphodiesterase isoenzymes: characterization and functional effects of various phosphodiesterase inhibitors in vitro. Truss MC; Uckert S; Stief CG; Schulz-Knappe P; Hess R; Forssmann WG; Jonas U Urology; 1995 May; 45(5):893-901. PubMed ID: 7747383 [TBL] [Abstract][Full Text] [Related]
7. Subcellular localization of rolipram-sensitive, cAMP-specific phosphodiesterases. Differential targeting and activation of the splicing variants derived from the PDE4D gene. Jin SL; Bushnik T; Lan L; Conti M J Biol Chem; 1998 Jul; 273(31):19672-8. PubMed ID: 9677395 [TBL] [Abstract][Full Text] [Related]
8. Increased cyclic adenosine 3',5'-monophosphate inhibits G protein-coupled activation of phospholipase C in rat FRTL-5 thyroid cells. Laglia G; Zeiger MA; Leipricht A; Caturegli P; Levine MA; Kohn LD; Saji M Endocrinology; 1996 Aug; 137(8):3170-6. PubMed ID: 8754735 [TBL] [Abstract][Full Text] [Related]
9. Adaptation of cAMP signaling system in SH-SY5Y neuroblastoma cells following expression of a constitutively active stimulatory G protein alpha, Q227L Gsalpha. Jang IS; Juhnn YS Exp Mol Med; 2001 Mar; 33(1):37-45. PubMed ID: 11322485 [TBL] [Abstract][Full Text] [Related]
11. Short term feedback regulation of cAMP in FRTL-5 thyroid cells. Role of PDE4D3 phosphodiesterase activation. Oki N; Takahashi SI; Hidaka H; Conti M J Biol Chem; 2000 Apr; 275(15):10831-7. PubMed ID: 10753877 [TBL] [Abstract][Full Text] [Related]
12. Multiple mechanisms for desensitization of A2a adenosine receptor-mediated cAMP elevation in rat pheochromocytoma PC12 cells. Chern Y; Lai HL; Fong JC; Liang Y Mol Pharmacol; 1993 Nov; 44(5):950-8. PubMed ID: 8246918 [TBL] [Abstract][Full Text] [Related]
13. Properties and hormonal regulation of two structurally related cAMP phosphodiesterases from the rat Sertoli cell. Swinnen JV; Tsikalas KE; Conti M J Biol Chem; 1991 Sep; 266(27):18370-7. PubMed ID: 1655746 [TBL] [Abstract][Full Text] [Related]
14. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents. Marcoz P; Prigent AF; Lagarde M; Nemoz G Mol Pharmacol; 1993 Nov; 44(5):1027-35. PubMed ID: 8246905 [TBL] [Abstract][Full Text] [Related]
15. Correlation of cell-free brain cyclic nucleotide phosphodiesterase activities to cyclic AMP decay in intact brain slices. Whalin ME; Garrett RL; Thompson WJ; Strada SJ Second Messengers Phosphoproteins; 1988-1989; 12(5-6):311-25. PubMed ID: 2856115 [TBL] [Abstract][Full Text] [Related]
16. Role of cyclic nucleotide phosphodiesterase isozymes in intact canine trachealis. Torphy TJ; Zhou HL; Burman M; Huang LB Mol Pharmacol; 1991 Mar; 39(3):376-84. PubMed ID: 1848659 [TBL] [Abstract][Full Text] [Related]
17. Desensitization of Gs-coupled receptor signaling by constitutively active mutants of the human lutropin/choriogonadotropin receptor. Shinozaki H; Butnev V; Tao YX; Ang KL; Conti M; Segaloff DL J Clin Endocrinol Metab; 2003 Mar; 88(3):1194-204. PubMed ID: 12629106 [TBL] [Abstract][Full Text] [Related]
18. Hormonal regulation of 3',5'-adenosine monophosphate phosphodiesterases in cultured rat granulosa cells. Conti M; Kasson BG; Hsueh AJ Endocrinology; 1984 Jun; 114(6):2361-8. PubMed ID: 6202500 [TBL] [Abstract][Full Text] [Related]
19. Isozymes of cyclic-3',5'-nucleotide phosphodiesterases in renal epithelial LLC-PK1 cells. Rassier ME; McIntyre SJ; Yamaki M; Takeda S; Lin JT; Dousa TP Kidney Int; 1992 Jan; 41(1):88-99. PubMed ID: 1343559 [TBL] [Abstract][Full Text] [Related]
20. Characterization of human placental cytosolic adenosine 3',5'-monophosphate phosphodiesterase by inhibitors and insulin treatment. Xiong LM; LeBon TR; Fujita-Yamaguchi Y Endocrinology; 1990 Apr; 126(4):2102-9. PubMed ID: 2156681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]