These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8544980)

  • 1. Neurochemical changes following occlusion of the middle cerebral artery in rats.
    Allen GV; Cheung RT; Cechetto DF
    Neuroscience; 1995 Oct; 68(4):1037-50. PubMed ID: 8544980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-course of neuropeptide changes in peri-ischemic zone and amygdala following focal ischemia in rats.
    Cheung RT; Diab T; Cechetto DF
    J Comp Neurol; 1995 Sep; 360(1):101-20. PubMed ID: 7499557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuropeptide changes following excitotoxic lesion of the insular cortex in rats.
    Cheung RT; Cechetto DF
    J Comp Neurol; 1995 Nov; 362(4):535-50. PubMed ID: 8636466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colchicine affects cortical and amygdalar neurochemical changes differentially after middle cerebral artery occlusion in rats.
    Cheung RT; Cechetto DF
    J Comp Neurol; 1997 Oct; 387(1):27-41. PubMed ID: 9331169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ischemic tolerance and lipid peroxidation in the brain.
    Chimon GN; Wong PT
    Neuroreport; 1998 Jul; 9(10):2269-72. PubMed ID: 9694213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estrogen synthesis in the central nucleus of the amygdala following middle cerebral artery occlusion: role in modulating neurotransmission.
    Saleh TM; Connell BJ; Legge C; Cribb AE
    Neuroscience; 2005; 135(4):1141-53. PubMed ID: 16165297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat.
    Garcia JH; Yoshida Y; Chen H; Li Y; Zhang ZG; Lian J; Chen S; Chopp M
    Am J Pathol; 1993 Feb; 142(2):623-35. PubMed ID: 8434652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a cortical site for stress-induced cardiovascular dysfunction.
    Cechetto DF
    Integr Physiol Behav Sci; 1994; 29(4):362-73. PubMed ID: 7696133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of intra-ischemic hypothermia on the expression of c-Fos and c-Jun, and DNA binding activity of AP-1 after focal cerebral ischemia in rat brain.
    Akaji K; Suga S; Fujino T; Mayanagi K; Inamasu J; Horiguchi T; Sato S; Kawase T
    Brain Res; 2003 Jun; 975(1-2):149-57. PubMed ID: 12763603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apoptosis and c-Jun in the thalamus of the rat following cortical infarction.
    Soriano MA; Ferrer I; Rodríguez-Farré E; Planas AM
    Neuroreport; 1996 Jan; 7(2):425-8. PubMed ID: 8730797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptide Y-Y1 receptor antisense oligodeoxynucleotide increases the infarct volume after middle cerebral artery occlusion in rats.
    Cheung RT; Cechetto DF
    Neuroscience; 2000; 98(4):771-7. PubMed ID: 10891620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracerebroventricular injection of a neuropeptide Y-Y1 receptor agonist increases while BIBP3226, a Y1 antagonist, reduces the infarct volume following transient middle cerebral artery occlusion in rats.
    Chen SH; Cheung RT
    Neuroscience; 2003; 116(1):119-26. PubMed ID: 12535945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase in insulin-like growth factor II receptor within ischemic neurons following focal cerebral infarction.
    Stephenson DT; Rash K; Clemens JA
    J Cereb Blood Flow Metab; 1995 Nov; 15(6):1022-31. PubMed ID: 7593334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral hypothalamic area neurotransmission and neuromodulation of the specific cardiac effects of insular cortex stimulation.
    Oppenheimer SM; Saleh T; Cechetto DF
    Brain Res; 1992 May; 581(1):133-42. PubMed ID: 1354006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat.
    Zhang ZG; Chopp M; Gautam S; Zaloga C; Zhang RL; Schmidt HH; Pollock JS; Förstermann U
    Brain Res; 1994 Aug; 654(1):85-95. PubMed ID: 7526966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stroke induces widespread changes of gene expression for glial cell line-derived neurotrophic factor family receptors in the adult rat brain.
    Arvidsson A; Kokaia Z; Airaksinen MS; Saarma M; Lindvall O
    Neuroscience; 2001; 106(1):27-41. PubMed ID: 11564414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in striatal extracellular amino acid concentrations between Wistar and Fischer 344 rats after middle cerebral artery occlusion.
    Herz RC; Gaillard PJ; de Wildt DJ; Versteeg DH
    Brain Res; 1996 Apr; 715(1-2):163-71. PubMed ID: 8739635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic parasympathetic sectioning decreases regional cerebral blood flow during hemorrhagic hypotension and increases infarct size after middle cerebral artery occlusion in spontaneously hypertensive rats.
    Koketsu N; Moskowitz MA; Kontos HA; Yokota M; Shimizu T
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):613-20. PubMed ID: 1618940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of strain/vendor differences on the outcome of focal ischemia induced by intraluminal middle cerebral artery occlusion in the rat.
    Oliff HS; Weber E; Eilon G; Marek P
    Brain Res; 1995 Mar; 675(1-2):20-6. PubMed ID: 7796130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle-related gene expression in the adult rat brain: selective induction of cyclin G1 and p21WAF1/CIP1 in neurons following focal cerebral ischemia.
    van Lookeren Campagne M; Gill R
    Neuroscience; 1998 Jun; 84(4):1097-112. PubMed ID: 9578398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.