BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8545123)

  • 1. Induction of apoptosis by rho in NIH 3T3 cells requires two complementary signals. Ceramides function as a progression factor for apoptosis.
    Esteve P; del Peso L; Lacal JC
    Oncogene; 1995 Dec; 11(12):2657-65. PubMed ID: 8545123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of apoptosis in NIH3T3 cells after serum deprivation by overexpression of rho-p21, a GTPase protein of the ras superfamily.
    Jiménez B; Arends M; Esteve P; Perona R; Sánchez R; Ramón y Cajal S; Wyllie A; Lacal JC
    Oncogene; 1995 Mar; 10(5):811-6. PubMed ID: 7898922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumorigenic activity of rho genes from Aplysia californica.
    Perona R; Esteve P; Jiménez B; Ballestero RP; Ramón y Cajal S; Lacal JC
    Oncogene; 1993 May; 8(5):1285-92. PubMed ID: 8479750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GTP-binding protein-stimulated phospholipase C and phospholipase D activities in ras-transformed NIH 3T3 fibroblasts.
    Quilliam LA; Der CJ; Brown JH
    Second Messengers Phosphoproteins; 1990; 13(1):59-67. PubMed ID: 2149569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of type D phospholipase by serum stimulation and ras-induced transformation in NIH3T3 cells.
    Carnero A; Cuadrado A; del Peso L; Lacal JC
    Oncogene; 1994 May; 9(5):1387-95. PubMed ID: 8152799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rho-regulated signals induce apoptosis in vitro and in vivo by a p53-independent, but Bcl2 dependent pathway.
    Esteve P; Embade N; Perona R; Jiménez B; del Peso L; León J; Arends M; Miki T; Lacal JC
    Oncogene; 1998 Oct; 17(14):1855-69. PubMed ID: 9778052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of phosphatidylcholine-specific phospholipase C in NIH-3T3 fibroblasts and their H-ras transformants: NMR and immunochemical studies.
    Podo F; Ferretti A; Knijn A; Zhang P; Ramoni C; Barletta B; Pini C; Baccarini S; Pulciani S
    Anticancer Res; 1996; 16(3B):1399-412. PubMed ID: 8694508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ral and Rho-dependent activation of phospholipase D in v-Raf-transformed cells.
    Frankel P; Ramos M; Flom J; Bychenok S; Joseph T; Kerkhoff E; Rapp UR; Feig LA; Foster DA
    Biochem Biophys Res Commun; 1999 Feb; 255(2):502-7. PubMed ID: 10049738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance to apoptosis induced by alkylating agents in v-Ha-ras-transformed cells due to defect in p53 function.
    Kuo ML; Chou YW; Chau YP; Huang TS
    Mol Carcinog; 1997 Apr; 18(4):221-31. PubMed ID: 9142217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell and tissue-type specific expression of Ras-related GTPase RhoB.
    Fritz G; Gnad R; Kaina B
    Anticancer Res; 1999; 19(3A):1681-8. PubMed ID: 10470101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of p202, a modulator of apoptosis, during oncogenic transformation of NIH 3T3 cells by activated H-Ras (Q61L) contributes to cell survival.
    Xin H; Geng Y; Pramanik R; Choubey D
    J Cell Biochem; 2003 Jan; 88(1):191-204. PubMed ID: 12461788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geranylgeranylated, but not farnesylated, RhoB suppresses Ras transformation of NIH-3T3 cells.
    Mazières J; Tillement V; Allal C; Clanet C; Bobin L; Chen Z; Sebti SM; Favre G; Pradines A
    Exp Cell Res; 2005 Apr; 304(2):354-64. PubMed ID: 15748883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dominant-negative Rac1 suppresses Ras-induced apoptosis possibly through activation of NFkappaB in Ha-ras oncogene-transformed NIH/3T3 cells.
    Chou CK; Liang KH; Tzeng CC; Huang GC; Chuang JI; Chang TY; Liu HS
    Life Sci; 2006 Mar; 78(16):1823-9. PubMed ID: 16274703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased retinoylation in NIH 3T3 cells transformed with activated Ha-ras.
    Takahashi N; De Luca LM; Breitman TR
    Biochem Biophys Res Commun; 1997 Oct; 239(1):80-4. PubMed ID: 9345273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitogenic phospholipase D activity is restricted to caveolin-enriched membrane microdomains.
    Xu L; Shen Y; Joseph T; Bryant A; Luo JQ; Frankel P; Rotunda T; Foster DA
    Biochem Biophys Res Commun; 2000 Jun; 273(1):77-83. PubMed ID: 10873567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low molecular weight factor from dividing cells activates phospholipase D in caveolin-enriched membrane microdomains.
    Bychenok S; Foster DA
    Arch Biochem Biophys; 2000 May; 377(1):139-45. PubMed ID: 10775453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Rho protein in lovastatin-induced breakdown of actin cytoskeleton.
    Koch G; Benz C; Schmidt G; Olenik C; Aktories K
    J Pharmacol Exp Ther; 1997 Nov; 283(2):901-9. PubMed ID: 9353412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of phospholipase D by Ras proteins mediated by its effectors Ral-GDS, PI3K and Raf-1.
    Lucas L; Penalva V; Ramírez de Molina A; Del Peso L; Lacal JC
    Int J Oncol; 2002 Sep; 21(3):477-85. PubMed ID: 12168089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rho small G protein and cytoskeletal control.
    Takai Y; Kaibuchi K; Sasaki T; Tanaka K; Shirataki H; Nakanishi H
    Princess Takamatsu Symp; 1994; 24():338-50. PubMed ID: 8983086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effector domain mutants of Rho dissociate cytoskeletal changes from nuclear signaling and cellular transformation.
    Zohar M; Teramoto H; Katz BZ; Yamada KM; Gutkind JS
    Oncogene; 1998 Aug; 17(8):991-8. PubMed ID: 9747878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.