BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8545597)

  • 1. Effect of free fatty acids on the structure and properties of erythrocyte membrane.
    Lapshina EA; Zavodnik IB; Bryszewska M
    Scand J Clin Lab Invest; 1995 Aug; 55(5):391-7. PubMed ID: 8545597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of free fatty acids on erythrocyte morphology and membrane fluidity.
    Zavodnik IB; Zaborowski A; Niekurzak A; Bryszewska M
    Biochem Mol Biol Int; 1997 Jun; 42(1):123-33. PubMed ID: 9192092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of tetracaine on membrane-bound acetylcholinesterase activity and anilinonaphthalene sulphonate-induced membrane fluorescence.
    Haque SJ; Poddar MK
    Biochem Pharmacol; 1985 Aug; 34(15):2599-603. PubMed ID: 4015702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of cetiedil on erythrocyte membrane microviscosity and acetylcholinesterase activity.
    Giannettini J; Chauvet M; Dell'Amico M; Bourdeaux M
    Pharmacol Res; 1992 Jan; 25(1):31-41. PubMed ID: 1738756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of organic solvents on human erythrocyte membrane acetylcholinesterase activity in vitro.
    Korpela M; Tähti H
    Arch Toxicol Suppl; 1986; 9():320-3. PubMed ID: 3468911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential inhibition of human erythrocyte acetylcholinesterase by polyphenols epigallocatechin-3-gallate and resveratrol. Relevance of the membrane-bound form.
    Salazar PB; de Athayde Moncorvo Collado A; Canal-Martínez V; Minahk CJ
    Biofactors; 2017 Jan; 43(1):73-81. PubMed ID: 27591048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignocaine: inhibitory effect on synaptosomal and erythrocyte membrane-bound acetylcholinesterase activity.
    Haque SJ; Poddar MK
    Biochem Pharmacol; 1983 Nov; 32(22):3443-6. PubMed ID: 6651866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaesthetic potency of inhalation agents is independent of membrane microviscosity.
    Norman RI; Hirst R; Appadu BL; McKay M; Bradley P; Griffiths R; Rowbotham DJ
    Br J Anaesth; 1997 Mar; 78(3):290-5. PubMed ID: 9135308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of selected organic solvents on intact human red cell membrane acetylcholinesterase in vitro.
    Korpela M; Tähti H
    Toxicol Appl Pharmacol; 1986 Sep; 85(2):257-62. PubMed ID: 3764913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of human erythrocyte acetylcholinesterase inhibition by chlorpromazine.
    Spinedi A; Pacini L; Limatola C; Luly P; Farias RN
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):461-3. PubMed ID: 1654884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Synthetic bioantioxidants--inhibitors of acetylcholinesterase activity].
    Braginskaia FI; Zorina OM; Molochkina EM; Nikiforov GA; Burlakova EB
    Izv Akad Nauk SSSR Biol; 1992; (5):690-8. PubMed ID: 1447418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly cooperative inhibition of acetylcholinesterase by pentachlorophenol in human erythrocytes.
    Igisu H; Hamasaki N; Ikeda M
    Biochem Pharmacol; 1993 Jul; 46(1):175-7. PubMed ID: 8347128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of perindoprilat with human red blood cells.
    Piasecka A; Marciniak K; Koter M; Krajewska E; Leyko W; Bryszewska M
    Scand J Clin Lab Invest; 1999 Apr; 59(2):147-52. PubMed ID: 10353329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane order and ionic strength modulation of the inhibition of the membrane-bound acetylcholinesterase by epigallocatechin‑3‑gallate.
    Salazar PB; Dupuy FG; de Athayde Moncorvo Collado A; Minahk CJ
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):170-177. PubMed ID: 30463700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of n-hexane and its metabolites on erythrocyte and synaptosome membrane acetylcholinesterase in vitro.
    Rantanen S; Hyppönen S; Ahonen I; Tähti H
    Arch Toxicol Suppl; 1991; 14():38-40. PubMed ID: 1805757
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of blood lipoproteins and apolipoproteins A-I, C, and E on the microviscosity of erythrocyte membranes.
    Panin LE; Butusova VN; Ryazantseva NV; Novitskii VV
    Bull Exp Biol Med; 2009 Sep; 148(3):385-8. PubMed ID: 20396695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in the lipid physical state in human erythrocyte membranes subjected lead exposure in vitro].
    Oleksiuk OB; Finin VS; Slobozhanina EI
    Biofizika; 2003; 48(2):246-50. PubMed ID: 12723349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for measuring membrane microviscosity using pyrene excimer formation. Application to human erythrocyte ghosts.
    Dembo M; Glushko V; Aberlin ME; Sonenberg M
    Biochim Biophys Acta; 1979 Apr; 552(2):201-11. PubMed ID: 444502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Damage to erythrocyte membranes induced by high-intensity ultrasound].
    Adzerikho IE; Kozlova NM; Antonovich AN; Zubritskaia GP; Slobozhanina EI
    Biofizika; 2004; 49(5):845-51. PubMed ID: 15526470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of cholinergic drug induced quenching of acetylcholinesterase bound thioflavin-T fluorescence with their inhibition activity.
    Islam MM; Rohman MA; Gurung AB; Bhattacharjee A; Aguan K; Mitra S
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():250-257. PubMed ID: 28822269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.