BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8546837)

  • 1. Improved homogenization of recombinant Escherichia coli following pretreatment with guanidine hydrochloride.
    Bailey SM; Blum PH; Meagher MM
    Biotechnol Prog; 1995; 11(5):533-9. PubMed ID: 8546837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between cell disruption conditions, cell debris particle size, and inclusion body release.
    Van Hee P; Middelberg AP; Van Der Lans RG; Van Der Wielen LA
    Biotechnol Bioeng; 2004 Oct; 88(1):100-10. PubMed ID: 15449302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cumulative sedimentation analysis of Escherichia coli debris size.
    Wong HH; O'Neill BK; Middelberg AP
    Biotechnol Bioeng; 1997 Aug; 55(3):556-64. PubMed ID: 18636523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refolding and purification of Zymomonas mobilis levansucrase produced as inclusion bodies in fed-batch culture of recombinant Escherichia coli.
    Sunitha K; Chung BH; Jang KH; Song KB; Kim CH; Rhee SK
    Protein Expr Purif; 2000 Apr; 18(3):388-93. PubMed ID: 10733894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrifugal processing of cell debris and inclusion bodies from recombinant Escherichia coli.
    Wong HH; O'Neill BK; Middelberg AP
    Bioseparation; 1996; 6(6):361-72. PubMed ID: 9352683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Isolation, purification and renaturation of recombinant-DNA-derived porcine somatotropin].
    Li Z; Yu RS; Liu HL; Wang Y; Zhang P; Zhou ZA; Zhang DF
    Sheng Wu Gong Cheng Xue Bao; 2001 Nov; 17(6):703-5. PubMed ID: 11910769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies.
    Misawa S; Kumagai I
    Biopolymers; 1999; 51(4):297-307. PubMed ID: 10618597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of bioactive protein from bacterial inclusion bodies using trifluoroethanol as solubilization agent.
    Upadhyay V; Singh A; Jha D; Singh A; Panda AK
    Microb Cell Fact; 2016 Jun; 15():100. PubMed ID: 27277580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput purification of recombinant human growth hormone using radial flow chromatography.
    Singh SM; Sharma A; Panda AK
    Protein Expr Purif; 2009 Nov; 68(1):54-9. PubMed ID: 19500673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of recombinant mink growth hormone in E. coli.
    Sereikaite J; Statkute A; Morkunas M; Radzevicius K; Borromeo V; Secchi C; Bumelis VA
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):316-23. PubMed ID: 17103160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.
    Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S
    J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrifugal recovery and dissolution of recombinant Gly-IGF-II inclusion-bodies: the impact of feedrate and re-centrifugation on protein yield.
    Wong HH; O'Neill BK; Middelberg AP
    Bioseparation; 1996 Jun; 6(3):185-92. PubMed ID: 8987684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization of Escherichia coli recombinant proteins from inclusion bodies.
    Simpson RJ
    Cold Spring Harb Protoc; 2010 Sep; 2010(9):pdb.prot5485. PubMed ID: 20810632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refolding of proteins from inclusion bodies is favored by a diminished hydrophobic effect at elevated pressures.
    Crisman RL; Randolph TW
    Biotechnol Bioeng; 2009 Feb; 102(2):483-92. PubMed ID: 18781701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical treatment of Escherichia coli. II. Direct extraction of recombinant protein from cytoplasmic inclusion bodies in intact cells.
    Falconer RJ; O'Neill BK; Middelberg AP
    Biotechnol Bioeng; 1998 Feb; 57(4):381-6. PubMed ID: 10099214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renaturation of recombinant human neurotrophin-3 from inclusion bodies using a suppressor agent of aggregation.
    Suenaga M; Ohmae H; Tsuji S; Itoh T; Nishimura O
    Biotechnol Appl Biochem; 1998 Oct; 28 ( Pt 2)():119-24. PubMed ID: 9756741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method to recover inclusion body protein from recombinant E. coli fed-batch processes based on phage ΦX174-derived lysis protein E.
    Ehgartner D; Sagmeister P; Langemann T; Meitz A; Lubitz W; Herwig C
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5603-5614. PubMed ID: 28429059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of focused acoustics for cell disruption to provide ultra scale-down insights of microbial homogenization and its bioprocess impact--recovery of antibody fragments from rec E. coli.
    Li Q; Aucamp JP; Tang A; Chatel A; Hoare M
    Biotechnol Bioeng; 2012 Aug; 109(8):2059-69. PubMed ID: 22383367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanded bed adsorption for recovery of renatured human recombinant interleukin 8 from Escherichia coli inclusion bodies.
    Barnfield Frej AK
    Bioseparation; 1996; 6(5):265-71. PubMed ID: 9210348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient solubilization, activation, and purification of recombinant Cry45Aa of Bacillus thuringiensis expressed as inclusion bodies in Escherichia coli.
    Okumura S; Saitoh H; Wasano N; Katayama H; Higuchi K; Mizuki E; Inouye K
    Protein Expr Purif; 2006 May; 47(1):144-51. PubMed ID: 16307894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.