BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8547237)

  • 21. Anaerobic citrate metabolism and its regulation in enterobacteria.
    Bott M
    Arch Microbiol; 1997; 167(2-3):78-88. PubMed ID: 9133329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of Na(+)-dependent citrate transport from the structure of an asymmetrical CitS dimer.
    Wöhlert D; Grötzinger MJ; Kühlbrandt W; Yildiz Ö
    Elife; 2015 Dec; 4():e09375. PubMed ID: 26636752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The citrate carrier CitS probed by single-molecule fluorescence spectroscopy.
    Kästner CN; Prummer M; Sick B; Renn A; Wild UP; Dimroth P
    Biophys J; 2003 Mar; 84(3):1651-9. PubMed ID: 12609868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catabolite repression of the citrate fermentation genes in Klebsiella pneumoniae: evidence for involvement of the cyclic AMP receptor protein.
    Meyer M; Dimroth P; Bott M
    J Bacteriol; 2001 Sep; 183(18):5248-56. PubMed ID: 11514506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of Na+/H+ exchange by Escherichia coli NhaA in reconstituted proteoliposomes.
    Dibrov PA; Taglicht D
    FEBS Lett; 1993 Dec; 336(3):525-9. PubMed ID: 8282121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternating access and a pore-loop structure in the Na+-citrate transporter CitS of Klebsiella pneumoniae.
    Sobczak I; Lolkema JS
    J Biol Chem; 2004 Jul; 279(30):31113-20. PubMed ID: 15148311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria catalyses a second transport mode: ornithine+/H+ exchange.
    Indiveri C; Tonazzi A; Stipani I; Palmieri F
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):705-11. PubMed ID: 10417335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional characterization of CitM, the Mg2+-citrate transporter.
    Li H; Pajor AM
    J Membr Biol; 2002 Jan; 185(1):9-16. PubMed ID: 11891560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of basic amino acid residues important for citrate binding by the periplasmic receptor domain of the sensor kinase CitA.
    Gerharz T; Reinelt S; Kaspar S; Scapozza L; Bott M
    Biochemistry; 2003 May; 42(19):5917-24. PubMed ID: 12741850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Projection structure by single-particle electron microscopy of secondary transport proteins GltT, CitS, and GltS.
    Mościcka KB; Krupnik T; Boekema EJ; Lolkema JS
    Biochemistry; 2009 Jul; 48(28):6618-23. PubMed ID: 19518127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determinants of substrate and cation affinities in the Na+/dicarboxylate cotransporter.
    Kahn ES; Pajor AM
    Biochemistry; 1999 May; 38(19):6151-6. PubMed ID: 10320342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of pyridoxal 5'-phosphate on the function of the purified mitochondrial tricarboxylate transport protein.
    Gremse DA; Dean B; Kaplan RS
    Arch Biochem Biophys; 1995 Jan; 316(1):215-9. PubMed ID: 7840619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of the tricarboxylate carrier from eel liver mitochondria.
    Zara V; Iacobazzi V; Siculella L; Gnoni GV; Palmieri F
    Biochem Biophys Res Commun; 1996 Jun; 223(3):508-13. PubMed ID: 8687426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: The Na(+)-citrate symporter CitS as an example.
    Huber T; Steiner D; Röthlisberger D; Plückthun A
    J Struct Biol; 2007 Aug; 159(2):206-21. PubMed ID: 17369048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Citrate uniport by the mitochondrial tricarboxylate carrier: a basis for a new hypothesis for the transport mechanism.
    De Palma A; Scalera V; Bisaccia F; Prezioso G
    J Bioenerg Biomembr; 2003 Apr; 35(2):133-40. PubMed ID: 12887011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An antibody library for stabilizing and crystallizing membrane proteins - selecting binders to the citrate carrier CitS.
    Röthlisberger D; Pos KM; Plückthun A
    FEBS Lett; 2004 Apr; 564(3):340-8. PubMed ID: 15111119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family.
    Bandell M; Ansanay V; Rachidi N; Dequin S; Lolkema JS
    J Biol Chem; 1997 Jul; 272(29):18140-6. PubMed ID: 9218448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of ion transport perturbations caused by hu MDR 1 protein overexpression.
    Hoffman MM; Roepe PD
    Biochemistry; 1997 Sep; 36(37):11153-68. PubMed ID: 9287158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of starvation on the activity of the mitochondrial tricarboxylate carrier.
    Zara V; Gnoni GV
    Biochim Biophys Acta; 1995 Oct; 1239(1):33-8. PubMed ID: 7548141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.