BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1444 related articles for article (PubMed ID: 8547239)

  • 1. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A.
    de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA
    Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions.
    de Planque MR; Bonev BB; Demmers JA; Greathouse DV; Koeppe RE; Separovic F; Watts A; Killian JA
    Biochemistry; 2003 May; 42(18):5341-8. PubMed ID: 12731875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synergistic effect between cholesterol and tryptophan-flanked transmembrane helices modulates membrane curvature.
    van Duyl BY; Meeldijk H; Verkleij AJ; Rijkers DT; Chupin V; de Kruijff B; Killian JA
    Biochemistry; 2005 Mar; 44(11):4526-32. PubMed ID: 15766283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length.
    Ren J; Lew S; Wang J; London E
    Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation.
    Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ
    Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
    Voglino L; McIntosh TJ; Simon SA
    Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evidence for predicted transmembrane peptide topography: incorporation of hydrophobic peptide alpha-helical rods with an N-terminal positive charge having a length comparable to the thickness of lipid bilayers into the membranes.
    Katakai R; Wanikawa K; Saga K
    Biopolymers; 1990; 30(7-8):815-9. PubMed ID: 2275981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR.
    Strandberg E; Ozdirekcan S; Rijkers DT; van der Wel PC; Koeppe RE; Liskamp RM; Killian JA
    Biophys J; 2004 Jun; 86(6):3709-21. PubMed ID: 15189867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids.
    Holland JW; Cullis PR; Madden TD
    Biochemistry; 1996 Feb; 35(8):2610-7. PubMed ID: 8611564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of transmembrane peptides on bilayers of phosphatidylcholines with different acyl chain lengths studied by solid-state NMR.
    Byström T; Strandberg E; Kovacs FA; Cross TA; Lindblom G
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):335-45. PubMed ID: 11118544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment.
    Jones DH; Barber KR; VanDerLoo EW; Grant CW
    Biochemistry; 1998 Nov; 37(47):16780-7. PubMed ID: 9843449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 73.