BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 8547264)

  • 1. Mechanism of native oat phytochrome photoreversion: a time-resolved absorption investigation.
    Chen E; Lapko VN; Lewis JW; Song PS; Kliger DS
    Biochemistry; 1996 Jan; 35(3):843-50. PubMed ID: 8547264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of the N-terminal alpha-helix unfolding in the photoreversion reaction of phytochrome A.
    Chen E; Lapko VN; Song PS; Kliger DS
    Biochemistry; 1997 Apr; 36(16):4903-8. PubMed ID: 9125511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced global structural changes in phytochrome A regulating photomorphogenesis in plants.
    Nakasako M; Iwata T; Inoue K; Tokutomi S
    FEBS J; 2005 Jan; 272(2):603-12. PubMed ID: 15654897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The system of phytochromes: photobiophysics and photobiochemistry in vivo.
    Sineshchekov VA
    Membr Cell Biol; 1998; 12(5):691-720. PubMed ID: 10379648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential interactions of phytochrome A (Pr vs. Pfr) with monoclonal antibodies probed by a surface plasmon resonance technique.
    Natori C; Kim JI; Bhoo SH; Han YJ; Hanzawa H; Furuya M; Song PS
    Photochem Photobiol Sci; 2007 Jan; 6(1):83-9. PubMed ID: 17200742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins.
    Remberg A; Ruddat A; Braslavsky SE; Gärtner W; Schaffner K
    Biochemistry; 1998 Jul; 37(28):9983-90. PubMed ID: 9665703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier-transform infrared spectroscopy of phytochrome: difference spectra of the intermediates of the photoreactions.
    Foerstendorf H; Mummert E; Schäfer E; Scheer H; Siebert F
    Biochemistry; 1996 Aug; 35(33):10793-9. PubMed ID: 8718870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential exposure of aromatic amino acids in the red-light-absorbing and far-red-light-absorbing forms of 124-kDa oat phytochrome.
    Singh BR; Song PS; Eilfeld P; Rüdiger W
    Eur J Biochem; 1989 Oct; 184(3):715-21. PubMed ID: 2806252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome.
    Andel F; Lagarias JC; Mathies RA
    Biochemistry; 1996 Dec; 35(50):15997-6008. PubMed ID: 8973170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide.
    Lapko VN; Jiang XY; Smith DL; Song PS
    Biochemistry; 1998 Sep; 37(36):12526-35. PubMed ID: 9730825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which factors determine the acidity of the phytochromobilin chromophore of plant phytochrome?
    Anders Borg O; Durbeej B
    Phys Chem Chem Phys; 2008 May; 10(18):2528-37. PubMed ID: 18446253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer.
    Ryu JS; Kim JI; Kunkel T; Kim BC; Cho DS; Hong SH; Kim SH; Fernández AP; Kim Y; Alonso JM; Ecker JR; Nagy F; Lim PO; Song PS; Schäfer E; Nam HG
    Cell; 2005 Feb; 120(3):395-406. PubMed ID: 15707897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectroscopic and light-induced kinetic characterization of a recombinant phytochrome of the cyanobacterium Synechocystis.
    Remberg A; Lindner I; Lamparter T; Hughes J; Kneip C; Hildebrandt P; Braslavsky SE; Gärtner W; Schaffner K
    Biochemistry; 1997 Oct; 36(43):13389-95. PubMed ID: 9341232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals.
    Chen M; Tao Y; Lim J; Shaw A; Chory J
    Curr Biol; 2005 Apr; 15(7):637-42. PubMed ID: 15823535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The photoreactions of recombinant phytochrome CphA from the cyanobacterium Calothrix PCC7601: a low-temperature UV-Vis and FTIR study.
    Schwinté P; Gärtner W; Sharda S; Mroginski MA; Hildebrandt P; Siebert F
    Photochem Photobiol; 2009; 85(1):239-49. PubMed ID: 18764898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced activation of bacterial phytochrome Agp1 monitored by static and time-resolved FTIR spectroscopy.
    Piwowarski P; Ritter E; Hofmann KP; Hildebrandt P; von Stetten D; Scheerer P; Michael N; Lamparter T; Bartl F
    Chemphyschem; 2010 Apr; 11(6):1207-14. PubMed ID: 20333618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoconversion mechanism of a green/red photosensory cyanobacteriochrome AnPixJ: time-resolved optical spectroscopy and FTIR analysis of the AnPixJ-GAF2 domain.
    Fukushima Y; Iwaki M; Narikawa R; Ikeuchi M; Tomita Y; Itoh S
    Biochemistry; 2011 Jul; 50(29):6328-39. PubMed ID: 21714499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved thermodynamic analysis of the oat phytochrome A phototransformation. A photothermal beam deflection study.
    Michler I; Braslavsky SE
    Photochem Photobiol; 2001 Oct; 74(4):624-35. PubMed ID: 11683044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and thermodynamic analysis of the light-induced processes in plant and cyanobacterial phytochromes.
    Chizhov I; Zorn B; Manstein DJ; Gärtner W
    Biophys J; 2013 Nov; 105(9):2210-20. PubMed ID: 24209867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both subunits of the dimeric plant photoreceptor phytochrome require chromophore for stability of the far-red light-absorbing form.
    Hennig L; Schäfer E
    J Biol Chem; 2001 Mar; 276(11):7913-8. PubMed ID: 11106666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.